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Abstract

Passive damping of structural dynamics using piezoceramic electromechanical energy
conversion and passive electrical networks is a relatively recent concept with little
implementation experience base. This report describes an implementation case study,
starting from conceptual design and technique selection, through detailed component design
and testing to simulation on the structrure to be damped. About 0.5kg. of piezoelectric
material was employed to damp the ASTREX testbed, a 5000kg structure. Emphasis was
placed upon designing the damping to enable high bandwidth robust feedback control.
Resistive piezoelectric shunting provided the necessary broadband damping. The
piezoelectric element was incorporated into a mechanically-tuned vibration absorber in
order to concentrate damping into the 30 to 40Hz frequency modes at the rolloff region of
the proposed compensator. A prototype of a steel flex-tensional motion amplification
device was built and tested. The effective stiffness and damping of the flex-tensional device
was experimentally verified. When six of these effective springs are placed in an
orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a
90kg. mass.

A NASTRAN finite element model of the testbed was modified to include the six-

spring damping system. An analytical model was developed for the spring in order to see
how the flex-tensional device and piezoelectric dimensions effect the critical stress and
strain energy distribution throughout the component. Simulation of the testbed
demonstrated the damping levels achievable in the completed system.
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diagonal matrix of cross-sectional areas of piezoelectric bar

magnetic field

generic capacitance, farads

piezoelectric material constant relating voltage in ith direction to strain in the

jth direction

vector of electrical displacements (charge/area)

Young's Modulus, elastic field

vector of electric fields (volts/meter)

= oXoba, real non-dimensional frequency ratio

shear modulus

vector of external applied currents
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material electromechanical coupling coefficient

generalized electromechanical coupling coefficient
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modal mass
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natural frequency of a one-degree of freedom system

resonant shunted piezoelectric electrical resonant frequency
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shear stress (Pascals)
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Relevant Key Words

ASTREX: Air Force Phillip's Laboratory Advanced Space Structure Research Experiment

facility at Edwards Air Force Base

Collocation: 1. collocated actuators and sensors are located at same point on the structure.

2. collocated transfer functions have their input and output at the same point on the

model.

Complex mode: modeshape associated to a single pole, complex modes come in complex

conjugate pairs.

Component: the essential part or mechanism of the damper. (i.e. the flex-tensional)

Damper: any damping implementation (i.e. washer or six-axis vibration absorber ) or

any damping component (i.e. flex-tensional or washer)

Device: any damping implementation with a distinctive mechanism and damping material.

(i.e. the piezoelectric-based flex-tensional or the six-axis vibration absorber)

Flex-tensional: steel part that uses preloaded flexured lever arms to amplify the stroke of

the piezoelectric

Non-proportional damping: damping implementation that influences collocated and

adjacent degrees of freedom, i.e. off-diagonal damping terms in damping matrix and

coupled equations of motion

Orthogonal: 1. matrices whose product is zero are mutually orthogonal. (decoupling the

equations of motion). 2. truss struts that are orthogonal are perpendicular to each other

(decoupling their control authority).

Proof mass damper: synonym for six-axis vibration absorber.

Proportional damping: damping implementation that influences collocated degrees of

freedom only. Mass-proportional damping is excluded in this definition, i.e. diagonal

damping matrix and decoupled equations of motion

Real or normal mode: modeshape associated to a pair of complex conjugate poles. The

definition of such modes implies the assumption of proportional damping.

Six-axis vibration absorber: three pairs of orthogonal flex-tensional dampers whose

purpose is to absorb the energy of a 90kg proof mass via shunted piezoelectics

Six-axis vibration isolator: three pairs of orthogonal flex-tedsional actuators whose

purpose is to isolate the 90kg proof mass from ASTREX dynamics via actuated

piezoelectrics

Smart Joint: rotary damper/actuator combination that absorbs or commands tripod-end

rotations via shunted/actuated piezoelectrics (i.e. washer, sleeve or equivalent struO

ix





CHAPTER 1

INTRODUCTION

Most modern spacecraft, including the proposed Space Station, need a means to isolate

precision-pointing instruments or microgravity experiments from the unpleasant dynamics

that are inherent to large flexible space trusses. Various disturbances can excite the

spacecraft's structural dynamics: a thrusting maneuver, a shuttle docking, an astronaut's

movement, onboard machinery or solar dust impacting to name a few. In order to prevent

any of these disturbances from propagating through the truss to the sensitive equipment, a

device must be designed to damp and/or isolate the performance-sensitive vibrations that

are excited by predicted disturbances. The implementation usually requires passive and

active stages, consisting of a passive structural damping implementation, and an isolation

control system, respectively.

1.1 MOTIVATION

There are many other applications where the addition of passive vibration damping to a

structural system can greatly increase the system's performance or stability. For example,

bridges and buildings need to damp the destructive dynamics from earthquakes.

Automobiles need to be isolated from rough road surfaces. In any case, the addition of

passive damping can decrease peak vibration amplitudes in structural systems and add

robustness to marginally stable active control systems Refs.[1, 2, 3]. Since the actual

system modes are rarely in complete agreement with the model, even the modeled modes

pose some threat to the stability of the closed loop system. In addition, lightly damped



modescanexist in therolloff regionof thecontrol_y_tem.Although these modes may not

be included in the model, they are still subject to control authority that has not yet rolled

off. These rolloff modes pose another threat of instability to the control designer.

There are several sources of passive damping in space structures. The most conm_on is

material damping by which structural strain energy is dissipated. Damping is also provided

by the Diction and impacting that occur in the structural joints. The inherent damping in a

truss can be increased by using damping enhancement schemes Refs.[3, 4, 25, 26, 27,

28]. Several damping techniques are applicable to space structures. Some viscoelastic

techniques have been developed for trusses in Ref. [5]. Proof-mass dampers (PMD's)

have been applied previously to space structure damping in Ref. [141 and conceptually in

Ref. [23]. Viscous damping struts were implemented in Ref. [7]. An active thermal

damping scheme was used in Ref. [8]. Impact dampers were used in Ref. [9]. Truss

structures with active piezoelectric members for vibration suppression are presented in

Refs. [10, 14, 24.].

With the advent of smart materials, like piezoelectrics, it is possible to sense, control

and passively damp structural vibrations with the same device, simultaneously. Using

passive electrical networks, such as resistor-capacitor (RC) and inductor-resistor-capacitor

(LRC) circuits, the device can absorb vibrations with minimal mass penalty.

In recent years, piezoelectric elements have been used as embedded sensors and

actuators in smart structures by Forward[ 11], Crawley and De Luis[13], and Hagood and

Crawley[14], and as elements of active structural vibration systems by Fanson and

Caughey[6], Hanagud et al. [15], and Bailey and Hubbard[16]. They have also been used

as actuation components in wave control experiments by Pines and yon Flotow [17].

Within active control systems, the piezoelectrics require complex amplifiers and associated

sensing electronics. These can be eliminated in passive shunting applications where the

only external element is a simple passive electrical circuit. Modelling of passive

piezoelectric damping is described in Ref. [4]. Experimental verification of passive

piezoelectric damping in a laboratory structure is described in Ref. [4, 14.]. The shunted

piezoelectric itself could also be used as a damped structural actuator in a control system, as

will be discussed later in this paper.

This report will present a passive piezoelectric damping implementation on Air Force

Phillip's Laboratory Advanced Space Structure Research Experiment (ASTREX) facility at

Edwards Air Force Base, figures 1 and 2. The motivation behind this research is to

provide as much passive damping as possible to facilitate Line-Of-Sight control roll-off.

Passively-shunted piezoelectrics were the chosen damping scheme because of their small

implementation experience base relative to the viscoelastic or viscous damping schemes.



Piezoceramic's high stiffness and temperaturestability make it useful for structural

dampingapplications.

In chapter 1, the modeling and passivedamping issuesof shuntedpiezoelectricsare

defined. In chapter 2, potential damping implementations,and control objectivesare

introducedfor ASTREX. In chapter3, thedesign,manufacturingandassemblydetailsof

the better device from the previoussection is explained. This chapter also describes

analyticalandfinite elementmodelingtechniquesof thecomponent. Chapter4 givesthe

experimentalverificationof thecomponent.Chapter5 simulatesthedampingperformance

of the six-axis proof massdynamic absorberin the ASTREX testbed. Conclusionsare

summarizedin Chapter6.

Figure 1. ASTREX spacestructurewith scaledsix-foot figure.Supportpedestalthat
elevatesthecenterof thetrussfrom thelab floor is not shown.

1.2 OBJECTIVE

The objective of this study was to develop optimal damping/actuation mechanisms that

demonstrate the virtues of passive damping for spacecraft performance and control. Before

the passive damping implementation ideas can be generated, the characteristics and

performance criteria of the undamped structure, ASTREX, must be considered. After all,

the development of piezoelectric dampers, actuators and sensors must be guided by the

performance-sensitive dynamics and control architectures of the specific class of structures

to be damped.

ASTREX consists of two major parts, a vertical ped_:stal upon which the test-article

pivots through an air-bearing system. The mass center is positioned such that the test-

article points downward from the horizontal position by about 30 degrees. The ASTREX

test article includes a tripod that supports a mirror known as the secondary (figure 2). The

primary Consists of over a hundred 1 meter back plane struts that form a hexagonal-shaped

3



lattice truss. The tertiary, located a couple of metersbehind the primary, housesthe

electronics. Thrusters,locatedon oppositesidesof theprimary, areavailableto perform

rapid slewing maneuvers.Two control momentgyrosareplacedon the primary, asare
tworeactionwheelson thesecondary.

Primary (6 Mirrors)

Tertiary

2 Trackers

Input=Torquer

Output=Angle

?
Secondary (Apex)

Figure 2. ASTREX space structure overview.

ASTREX's original control-structures interaction performance-metric, involved

minimizing the line-of-sight error from step input slewing maneuvers. For purposes of this

project, we have assumed use of the two reaction wheels on the secondary as control

actuators for line of sight. The frequency response of this transfer function (from torque

applied to line-of-sight) for the undamped structure is reproduced in chapter five. From

considerations of practical bandwidth limits of the reaction-wheel actuators, together with

knowledge of the capability of fast steering mirrors (which might be used in a fast, but

small-angle inner loop), the 30 to 40Hz frequency range was selected as a target closed-

loop bandwidth for this control loop. Eigenfrequencies below this bandwidth would be

actively controlled. Eigenfrequencies near the 30 to 40Hz cross-over would present robust

stability problems. Eigenfrequencies far above this bandwidth will need enough passive

damping for gain stabilization as depicted in figure 3.
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These heuristic considerations, codified in [ 18], lead us to emphasize passive damping.

treatments that target the decade centered about 30 to 40Hz, and target modes which

contribute strongly to rotational motion of the secondary.

a) b)

gain

0dB

loop gain

bandwidth

each line represents one

sa'uctural eigen_requency

fi-equency

required i /
damping _ I

\
/for robust phase \\ / for gain

stabilization _ /
,,x stabilization

bandwidth _ frequer_

Figure 3. Phase and Gain Stabilization issues. (a) Figurative depiction of testbed for band-
width to include many poorly modeled, lightly damped, closely spaced modes. (b)

Required level of passive damping to meet problem specification. Reference [ 1].

1.3. BACKGROUND: PASSIVE DAMPING MECHANISMS

The are many passive damping implementations which can be applied to large space

structures. For example, lossy materials can be applied to critical surfaces of the structure

to absorb strain energy. Structural members can be replaced with smart struts or actuators

to provide passive damping and active control. Vibrational energy in the host structure can

be dumped into active/passive tuned mass dampers, that are attached to the existing

structure to absorb vibrational energy. Regardless of the damping implementation

employed, the type of energy dissipation must be selected from conventional techniques or

a growing number of new options being developed in smart materials technology.

In the following seven paragraphs, viscoelastic, viscous, frictional, impact, thermal,

electromechanical, and magnetomechanical energy dissipation techniques that are applicable

to large spacecraft structures are presented.

Viscoelastic damping dissipates structural strain energy that is virtually proportional to

the velocity of relative movement. Since viscoelastic materials cannot be depended on for

their structural integrity, viscoelastics are generally shear sti'ained only as in the composite

strut application seen in figure 4.



//--- Viscoelastic

Compsite Strut _)

].. ", .. "... ". • "..o'. 2,', ..::.',...', ...;,..'. -.'..*,::,: o,'..,.'..'.'*_'.', '°: *,:.'.'. '.:2 .:.'.','.',_ _ ,_._:, 1

I I

x'x'-- Aluminum Sleave

Figure 4. Composite strut with viscoelastic/sleeve damping application.

As the strut undergoes an axial deformation the viscoelastic provides a resistive force

proportional to the relative velocity between the composite strut and the sleeve.

Viscous dampers, like the Honeywell D-Strut, depend on the fluid flow through a small

internal orifice to obtain passive damping performance. Analogous to the viscoelastic, the

viscous damper has insignificant internal stiffness in its dashpot. Parallel stiffnesses, such

as a preload spring, or the stiff housing in figure 5, must be created to give the device

structural integrity while allowing enough deformation for forced fluid flow through the

bellows. As the strut in figure 5, undergoes an axial displacement, the annulus is

compressed near the arch flexures, and fluid is forced into the bellows proportional to the

velocity of oscillation.

Axial Force Annulus

Fluid Cavity Arch Flexure

I

F-

J
F

Bellows

Figure 5. (a) Simplified schematic for the viscous damper. (b) D-strut.

When the fluid elastic actuator in figure 6 is used actively, a commanded force controls the

fluid pressure, which in turn elongates the strut. The pressurized composite cylinder

supports structural loads. Like other viscous dampers, the P-strut also uses viscous fluid

flow through an orifice to provide passive damping.
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Commanded
Fluid Flow Force(Activ
throughOrifice (Passive)

PressurizedCompositeCylinder

;)

, Flexible

Bellows

Reservoir)

y-
Figure 6. P-Strut: Fluid Elastic Actuator

Frictional or Coulomb damping is another form of damping that results from the sliding

of two dry surfaces. The damping force is equal to the product of the normal force and the

coefficient of friction, It, and is assumed to be independent of the velocity, once motion is

initiated. Since large space structures have large beam stiffnesses with small displacements

compared to civil structures, it is difficult to build a frictional damper that is not burdened

by overcoming static friction.

Impact dampers, also known as acceleration dampers, operate by allowing a series of

collisions between the primary vibrating system and a secondary mass carried in or on the

primary mass (figure 7). Since conservation of momentum is needed to model the

damping, velocity proportional damping cannot be assumed in the equations of motion.

However, it has been determined in reference [9] that the device is most efficient if two

impacts per cycle occur with impacts equally spaced in time.

\

\

M

F(t)

Figure 7. Simple impact damper.

Adaptive damping for spacecraft by temperature control was investigated in reference

[8]. The objective of this type of damping is to use the damping material's temperature

dependence as a control parameter to adjust the damping value. Controlling the damping of

various modes of vibration in a structural system can be accomplished by varying the

temperature of the appropriate damping elements through the use of individual heating

elements. Since the heating elements and the damping materials are embedded directly

7



within a compositematerial of low thermal conductivity, the temperaturewithin each

control point canbeeasily controlled with a minimum of heatinput and very little cross

coupling betweenthecontrolpoints.

Electromechanical energy dissipation techniques, such as resistively-shunted

piezoelectricsusedin reference[4], convertmechanicalstrainenergyinto electricalenergy

that is thendissipatedacrossa resistor. A piezoelectrictrussstrut is depictedin figure 8.

Trussstructureswith activepiezoelectricmembersfor vibration suppressionarepresented

in Refs. [10, 14]. Magnetostrictivesdissipateenergyin a similar manner,by converting

mechanical strain energy into a magnetically-induced current, that flows through a spiral

coil, and is dissipated across a resistor. Since passive piezoelectric damping technique was

used exclusively in this thesis, the next section presents a more thorough discussion of

passive piezoelectric damping from a modelling point of view.

Endpiece
Side View

5.04cm

Internal E]ec_'oded Surface

Electrode Bus

Figure 8. Piezoelectric truss member used in the space structure of reference [14].

1.4. APPROACH: PASSIVE PIEZOELECTRIC DAMPING

In this thes,_s, an attempt has been made to increase the system damping using passive

piezoelectric techniques, because the project sponsor wished to emphasize this technique.

Passive piezoelectric damping was also the chosen approach by consensus, because of its

relatively small implementation experience base compared to the viscoelastic or viscous

damping techniques. Piezoelectric damping is also justified by its relative temperature

insensitivity compared to other damping schemes, such as the viscoelastic. This exercise

was intended to test the suitability of passive piezoelectric damping for damping large scale

structures.
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1.4.1. MODELING OF SHUNTED PIEZOELECTRICS

Piezoelectric material can be used simultaneously as a passive damper, actuator and

sensor. Thisreport focuses on its development as a passive damper. This function,

however, is best understood in the context of its other two roles. The model in figure 9

shows that the passive damping shunting current, the actuation current and the applied

stress can all be used to strain the piezoelectric. See equation (1). Once the piezoelectric is

strained, mechanical energy is convened into electrical energy which is dissipated across a

shunting circuit. Thus, the piezoelec_c is depicted as an transformer in the network analog

in Figure 9(b). This electromechanical coupling gives the piezoelectric its third role as a

sensor.

It is possible to choose the shunting parallel circuit impedance, Z su (s), to maximize

the effective material loss factor, r/. If an appropriate Z su (s) is selected, the cyclic voltage

buildup is appropriately phased with the applied stress to yield piezoelectric passive

damping. A complete treatment of this concept is given in reference [4]. Once the shunting

and electrical impedances are defined by passive damping performance considerations, the

current-strain and stress-strain frequency dependent relationships are constrained by

equation (1).

S=[S E - d,L-'Z_sAd]T + [d,L-'Z_]I (1)

This equation gives the strain, S, for a given applied stress, T, and forcing current, I.

Notice that shunting the piezoelectric does not preclude use of the shunted element as an

actuator in an active control system but rather modifies the passive characteristics of the

actuator.
L

S .......................Y
s i . i

(a}

z

i

i ,r---r"n:

:

Figure 9. Simple physical model of a uniaxial shunted piezoelectric (a) and its network

analog (b).
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1.4.2. RESISTIVE VERSUS RESONANT SHUNTED PIEZOELECTRICS

In many applications, it is possible to model the piezoelectric element as loaded in omy

one of the following three directions: longitudinal case, force and field in the "3"

direction; transverse case, force in "1" or "2" direction, field in "3" direction: shear

case, force in "4" or "5" direction (shear), field in "2" or "1" direction, respectively (figure

10). If the designer desires broadband damping for the structure, the shunting circuit is a

resistor. If the designer desires narrowband damping, both an inductor and a resistor must

be shunted across the piezoelectric to form a resonant shunted LRC circuit.

(_acluauon

.° •

,,,_:/_....

1
(a)

V

8

Figure 10. Poling:

"_cuz_on
(_ctu_o--_

6 6 " ¢ ," I _.. ¢," /4

ini! V ing ",i '+ "1
,k ,i

/ (b) (c)

(a)Longitudinal case. (b)Transverse Case. (c)Shear Case.

,r. +

V
,7.

In resistively shunted piezoelectric damping, the resistor is varied until the RC circuit

time constant, p, is in the vicimty of modes to be damped. In resonant shunting, both the

inductor and the resistor must be tuned. Such a scheme should only be considered for

damping well-modeled structural modes that require excessive damping. This is one

reason why resonant circuit shunting was not investigated in this paper. Another option is

to tune several inductor and resistor pairs to damp discrete modes as in reference [4].

1.4.3. RESISTIVE SHUNTED PIEZOELECTRIC MATERIAL PROPERTIES

The resistor shunts the electrodes of a piezoelectric element as seen in figure 11.

2"

j
.¢ I • o--

Figure 11. Resistor shunted piezoelectric assumed geometry with forcing in thejth
direction and electric field in the ith direction. Ref. [4].
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Deriving theeffectivematerialpropertiesfrom impedanceyieldsthe loss factor, r/ and

relativemodulus, E. Ref. [4]:

2

E-£." (co) = 1 k,j

Where p_ is the dimensionless frequency:

OJ

p, = R,C_o.) = --, (4)
COd

The loss factor and relative modulus equations have been plotted versus p, the

dimensionless frequency (or the dimensionless resistance) in Figure 12 for a typical value

of the longitudinal coupling coefficient. These curves are similar to the equivalent material

curves for a standard linear solid. As illustrated by the graphs, for a given resistance the

stiffness of the piezoelectric changes from its short circuit value at low frequencies to its

open circuit value at high frequencies. The frequency of this transition is determined by the

shunting resistance. The material also exhibits a maximum loss factor at this transition

point.

As seen in figure 12, the material loss factor peaks at 42.5% in the longitudinal and

shear cases (k33=kt3=0.75). The transverse case has an 8% peak loss factor (k]5--0.3).

J
1

Re0i,0llve Shtmled Plexoelqecl_¢ Mahet|al PropeMieg

°'k.---f I
00! ; III

10 "1 10 0

Aho(No+_Umm_,_ Fm_m¢? )

!

I
/

\
\

I0

011

01 a

!
'011 _

"OS

Ol

I0 |

Figure 12. Effective material properties of a resistively shunted piezoelectric in the
longitudinal case (k33--0.75) showing material loss factor (solid) and relative

modulus (dash). Reference [4].
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1.4.4. RESONANT SHUNTED PIEZOELECTRIC MATERIAL PROPERTIES

An inductor and resistor shunt the electrodes of the piezoelectric as seen in figure 13.

s, [

i,
d

Figure 13. Resonant shunted piezoelectric assumed geometry with forcing in the jth

direction and electric field in the ith direction. Ref. [4].

Deriving the effective material properties from impedance yields the loss factor, r/ and

relative modulus, E. Ref. [4]:

where

k2e2/e2r '__,o _o g)
7 r_ l ¢'O_ = _2 2

- I I

g = 6.o/6.0,, = dimensionless frequency

= ¢o,/oJ, = tuning ratio

09, = 1/_ = electrical resonant frequency.

(5)

(6)

(7)

The loss factor and relative modulus equations have been plotted versus g, the

dimensionless frequency in Figure 5 for a typical value of the coupling coefficient. As

illustrated by figure 14, peak loss factors close to 100% are possible. It should also be

noted that the stiffness of the piezoelectric changes drastically from its short circuit value at

low frequencies to its open circuit value at high frequencies. This stiffness jump at g = I,

does not lend itself to the simple optimization techniques used in resistive shunting.

Transfer function techniques described completely in reference 4, must be used instead.

Sizing the LRC circuit for the smart joint and six-axis damping designs described in the

next chapter, yielded 15kH, and 0.4kH inductors, respectively. Inductors as large as these

must be simulated with the active inductor techniques described in reference [4]. Despite

the feasibility of this design, resonant circuit damping of discrete modes was not

12



investigatedany further. Instead,this researchfocuseson using broadbanddampingto
facilitate thecontrolof thesediscretemodes.
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Figure 14. Effective material properties of piezoceramic shunted by a resonant LRC circuit
(r = 0.20) in the transverse mode of operation (k33---0.38) showing material loss

factor (solid) and relative modulus (dash). Reference [4].

1.4.5. COUPLING SHUNTED PIEZOELECTRICS TO STRUCTURES

The peak loss factor of a vibration will decrease from that of the piezoelectric, when it

is coupled to its host structure, according to the fraction of the total strain energy that is

actually in the piezoelectric, reference [4]

rl r°r = r/i i, (8)
i=l

where U i is the strain energy in the ith element of the structure. The challenge is thus to

employ the damping piezoelectric material in areas of high strain energy to take advantage

of this weighting. Of course, the high strain energy locations must also be ranked by their

influence on system performance objectives.

The strain energy sharing concept is first considered when designing the damper to be

applied to the structure. Note that the word, damper, refers to the piezoelectric damping

material and any necessary series or parallel stiffnesses that give the device structural

integrity. All damping devices can be simplified to follow one of two different design

procedures:

Case(l) If the damper is made up of 100% piezoelectric that is loaded in one direction

the material properties in figure 12 apply. An example of this is a shear washer to be
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p,=R, CS, o_=_ (9)

Case(2) If the damper consists of a piezoelectric with series and/or parallel stiffnesses,

the peak loss factor location can no longer be guided by equation (9). In this case, equation

(9) is a good first iteration approximation if series stiffnesses are high and parallel

stiffnesses are low compared to the piezoelectric. The short circuit stiffness, K 1 and the

open circuit stiffness, (KI + K2) must be computed from an analytical or finite element

model of the complete device. Assuming the component's effective material properties are

analogous to the piezoelectric, a first order estimate of the effective coupling coefficient,

(10)

2
is then used in (9) in place of k,j to size the resistor. An example of this is the flex-

tensional device described in section 2.2.

Regardless of the design case, the short and open circuit stiffnesses of the damper

determine two of the minimum three points necessary to describe the flu'st-order stiffness

curve of the damper (figure 15(a)). The third parameter, conveniently given by the

transition frequency, p, is determined by the value of the shunting resistor.

1.4.6. FINITE ELEMENT MODELING OF PIEZOELECTRIC-BASED DAMPERS

In order to determine the performance of a given piezoelectric damping scheme in its

host structure, the damper's stiffness and loss factor curves from figure 15(a) must be

modeled. This behavior is captured by the following spring and dashpot finite element

configuration (figure 15(b)).

[r ,l

..s

s"

,,,s

(g, + gz) ///////,

C

////////

r,

oJ

Figure 15. (a) Effective damper properties of a resistively shunted piezoelectric damper in
the longitudinal case (k33=0.75) showing damper loss factor (solid) and the
damper's stiffness (dash). (b) Equivalent model of the piezoelectric-based damper.

14



Thecomplexstiffnessof the three element configuration is modeled with two linear

spring stiffnesses, K 1, K 2 and one complex dashpot stiffness, Cico as follows:

Keff=K,+ 1 +_ (11)

Given K 1 and K 2 from static structural models, C is the only unknown constant needed

to complete the dynamic model. Simple algebraic manipulations yield the appropriate

value of C such that the transition from low-frequency short-circuit stiffness to high-

frequency open-circuit stiffness occurs at the correct transition frequency, /9. This is

accomplished by arbitrarily selecting a third coordinate point, (co, K,HI), near the

transition of the stiffness curve.

Figure 15 shows an equivalent mechanical model of the resistively-shunted

piezoelectric damper (including series and parallel stiffnesses). This mechanical equivalent

model is suitable for inclusion in commercial finite element software.

The real and imaginary parts of the complex stiffness are separated in (12) to calculate

the real magnitude in (13):

K_ +(Co)) 2 K 2 +(Co)) 2

IIKeffll= _[Real(Keff)] 2 +[Imag(Keff)] 2 (13)

The results of (12 & 13) are manipulated into the

C'{a,}+C2{o2}+ {a_}=0 and solved for the only unknown, C.

C'{CO'[(K_ + K_) 2 -(llKeffll)2]}+

C' {cot[2K,K_(K,+ K 2)+ K: - 2(llKeffll) 2K_ 1}+

{K:(K] -(lIKeffll)2)}=o

quadratic equation,

(14)

This equivalent mechanical model is used in Chapter live to generate the simulated

performance transfer functions of the piezoelectric-based component
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CHAPTER 2

POTENTIAL PIEZOELECTRIC DAMPING
IMPLEMENTATIONS FOR ASTREX

The general problem of damping a complicated space structure with piezoelectric

materials is open-ended. In trusses consisting of repetitious truss bays the problem is to

optimize strut placement, in order to maximize the percentage of strain energy in the

damping elements. In structures, like ASTREX, which consists of tripod legs and a

hexagonal-planar truss, the options are more numerous for placing various damping

elements in various locations. There is freedom to use any device that has considerable

influence in damping the modes that facilitate control rolloff.

The most obvious damping scheme, building struts for ASTREX, was not considered

for the following two reasons: 1. It was determined in reference 2 that replacing

ASTREX's primary composite struts with piezoelectric struts offers insignificant damping

with only a few struts being switched. Obviously, if too many struts are replaced, the

structure becomes too heavy. 2. Laminated piezoelectric/composite active struts made by

TRW, which replaced the three tripod legs, have already been installed in the testbed. Prior

to their installation, full-length piezoelectric-composite tripod struts of figure 16, would

have been considered for manufacture. This implementation would replace a fraction of the

tripod composite tubing with three equally spaced piezoelectric stacks (nine meters long,

one inch diameter), such that the axial and bending stiffnesses were unaltered.

Two alternative damping schemes were considered. The "smart-node", active-joint or

piezoelectric washer is addressed in section 2.1. The six-axis proof mass damper with
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piezoelectricactuatorsis addressedin section2.2. Thesedevicesarerankedin section2.3

accordingto their lossfactorpotential.

PiezoelectricStacks

CompositeTubing_)_

Figure 16. ProposedPiezoelectric-compositetripod strutwith threeequallyspaced
piezoelectricstacks(threemeterversion).Tripod lengthis ninemeters.

2.1. POTENTIAL DAMPING DEVICE: SMART JOINT

An inexpensive and lightweight alternative to building full-length piezoelectric tripod

struts is the tripod rotational damper, or "smart joint". The objective of this device is to

damp the first two or three bending modes of the tripod fixture. Previous analysis in

reference [18], has determined that the low-frequency tripod bending modes are critical to

the line-of-sight performance. Therefore, the design issues of having a rotational damping

mechanism at each of the three tripod-to-backplane mounts was investigated.

Damping rotational motion can be accomplished with piezoelectric washers, sleeves or

equivalent struts. Each of these designs will be assessed later. First, it is necessary to

determine the rotational stiffness, Krot in figure 17, that leads to maximum strain energy in

the rotary spring, for the first and second bending modes (that occur at roughly 20 and

60Hz). Recall that a peak damping target frequency near 40Hz was selected to best enable

feedback control.

The quickest way to find the optimal stiffness of the rotational damper, is to use the

assumed modes method on a simple model of the essential deformation in ASTREX at low

frequencies; namely the spring-mass-tripod leg model of figure 17.

"Smart

Kro_,.__ Joint" El, L Apex

./////, i- ./////,

Figure 17. Tripod bending: The essential low frequency ASTREX dynamics.
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Calculating thepiezoelectricstrainenergyfraction with an assumedfirst-bendingmode"

shapefor thetripod leg, o)(x) = sin(a:x/L), yields:

1 _ 020)(x).4r = I El L. (15)
Ub,_,=- _aoE1 OX2 __ -_

T
(16)

U,.o, (l+ Ellr2 )-1
-- = _ (17)
U,o,.t 2 LK ,o, '

The variables, U,o,, U_,,. iand U,o,_ are the strain energies of the rotary damper, the tripod

leg and their sum, respectively. For example, when the strain-energy fraction is ten percent

(typical value from other ASTREX analyses), an initial estimate for the rotational stiffness

is: K,,,, = O. 5 EI/L.

A less quick, but more accurate method is to use the dynamic finite element model

shown in figure 18. The goal is to maximize the piezoelectric strain energy in the first or

second bending modes. This can be evaluated using the ratio:

Up.,,, _ (cbr)p,._,Kp,.,o(*,).,..o (18)

Since the piezoelectric's rotary stiffness is in series with its deformable channel interface

with the backplane mass (see figure 2), the modal displacements of the rotary damper must

be scaled by the ratio of piezoelectric flexibility to total rotary flexibility, a.

Kc_""l )(,t,,)...=o4*',).o,;

where, K,o, = I 1 )-i
_4 . (19)

Krot Mode 2 0.5 Mapex

3_

////// ode 1 I!/I/,,

Figure 18. Finite element modeling of tripod bending
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The optimal stiffness value of 400kNm agreeswith the optimal value obtained by

iteratingthestiffnessin thefull-scaleASTREX finite elementmodeluntil thepiezoelectric

strainenergypeaksnear40Hz (themeanfrequencybetweenthefirst two bendingmodes).

This indicates that it is safe to assume that most of the total strain energy at low frequencies

is in the tripod legs, not the backplane truss. NASTRAN also indicates that the

piezoelectric absorbs 10% of the total strain energy (4.2% modeled loss factor) for a typical

tripod bending mode at 29Hz. The optimal stiffness can now be used to design and assess

three different rotational dampers: the washer, the sleeve, and the equivalent strut.

2.1.1. PIEZOELECTRIC WASHER DESIGN

The washer design consists of piezoelectric material that is strained in shear under

dynamic loading. As the tripod leg bends it exerts a reaction torque at the tripod mount,

which behaves as a fixed boundary condition. Inserting piezoelectric washers between the

ears of the tripod strut and the clamps of the mount, transforms the rigid boundary

condition into a rotary spring as seen in figure 19.

,,_\
\

\

Insert PZT washers
here

Figure 19. Piezoelectric "washer" design for tripod strut joints. Two washers per strut are
each loaded in the shear mode.

Using the optimal stiffness in the shear stiffness equation (6), a washer with a one inch

outer diameter with a half-inch hole and one-eighth inch thickness is calculated.

400 ot - 7 aL - , (20)
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where J is the polar moment of inertia of a disk and the shear modulus is, G = 26GPa for

Ch-5400 piezoelectric material (short-circuit).

After the washer's size was determined acceptable, the feasibility of shunting circuits

for the piezoelectric dimensions must also be determined. Sizing the inductor, L, and

resistor, R, for resonant circuit shunting according to the formulations described in chapter

1, yields: L = 15kH and R = 1000kf/. For resistive shunting, a resistor, R = 1490kf/, is

ideal. Both of these resistors are accessible. The inductors, however, would be heavier

and larger than the actual testbed itself, unless an active inductor scheme described in

chapter one was used. Despite the feasibility of the resonant circuit, the broadband

damping of resistive shunting was used for the sake of controller gain stabilization.

2.1.2. PIEZOELECTRIC WASHER MANUFACTURING ISSUES

Once the washer's dimensions and shunting network has been sized and determined

feasible, the piezoelectric poling issues must be addressed. Manufacturing the washers

would involve inventing a feasible means to accomplish circumferencial poling of a disk.

Two methods were investigated: magnetic field poling and continuous sweep poling.

X

X

X

X

X

X

x/x
X X_/x E

X X _ X X

X

X

X

X

X

X

Figure 20. Circumferencial poling technique using a rapid change in magnetic field to
produce a circumferencial electric field, E. The magnetic field, B, is denoted by

"x's" and oriented out of the plane of the page.

The feasibility of magnetic field poling, shown schematically in figure 20, was evaluated

with the electromagnetic relation in equation (21). Equation (20) states that the line integral

of the electric field is equal to the change in magnetic flux within that integral path,

0 B = BTrr 2 .
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For r < R, andarequiredpolarizationvoltageof 38kV/cm,therequiredmagneticfield rate

of 3000gigagauss/sis toohighto createevenwith aninstantaneousstepinput.

I_-_BtI =-2E,,,.d= 3000 gigagauss 0._)__
rtq' d r s

An alternative poling scheme is a continuous circumferencial poling scheme adapted

from reference [12]. This poling technique rotates the washers slowly through two flexible

surface electrode pairs maintained at the required potential difference (figure 21). As the

electrodes sweep the sides of the washer, the piezoelectric gets poled a full revolution in

one hour: a rate sufficient to pole the piezoelectric material. This rate, co= 6deg./mi.nute

was adapted from the experimental recommendations in reference [12]. The flux field

described by equation (23) reference [12], decreases in intensity as the distance into the

piezoelectric, r, is increased.

l_
4mm

I-
Elec

4(

\
\

\
\

r \
---- ---/

-t

Figure 21. Continuous circumferencial poling of the washer.

a 3

E"(x) = E_pp,i,d (a2 + r2), ,
(23)

From equation 23, the poling voltage across the electrodes must be applied to both sides of

the piezoelectric in order to generate the same voltage in the center of the one-eighth inch

thick washer. The applied poling voltage of 40kV/cm can be increased with electrode

separation until the electrodes are separated by a 4mm gap. If the gap is increased still

further, the required applied voltage can no longer be generated with a 10kV power supply

(reference [12]). Figure 22 shows that the total electric field remains relatively constant if

the electrode pairs are placed symmetric about the piezoelectric. This poling procedure

would require the development of a circumferential poling machine. Such a task is out of

the scope for this project.
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Figure 22. Continuous washer poling electric field distribution.

2.1.3. PIEZOELECTRIC WASHER STRESS ANALYSIS

Static and dynamic stresses were computed from NASTRAN finite element program

and then used to evaluate the washer's load capability. Static stresses were computed from

a NASTRAN model of ASTREX in its 30 degree position. Static stresses of 5.9MPa were

calculated. This stress was conservatively assumed to be taken by the washers, not the

tripod bolt that actually takes the load of the attached tripod structure. Torquer input to

piezoelectric displacement transfer function output over the first 100Hz was calculated and

scaled by the reaction wheel's maximum apex torque of 37Nm, to find the maximum

dynamic stresses. The maximum dynamic stress in the piezoelectric washer is:

• ,_, - GOm'xr - 104MPa, (24)
t

where the shear modulus is, G = 26GPa, the maximum rotary displacement is,

0,_,_ = lO001.tradians, the outer radius is, r = 1 / 2inch, and the thickness is, t = 1 / 8inch.

In order to maintain a factor of safety near three times brittle fracture, and avoid

permanent depolarization in the piezoelectric, the piezoelectric design stress limit of 50MPa
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was enforced. The 50MPa limit also ensures that the loss factor does not taper off at high.

stresses as seen in figure 23.
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Figure 23. Percent depolarization versus applied stress in MPa for PZT Ch-5400. Note
the permanent depolarization hysterisis loop.

For the washer, unlike the six-axis tuned-mass damper in section 2.2, there is no

practical way to provide a mechanical stop to prevent excessive rotary motion directly.

Instead a rigid mechanical stop would be required to impact with the tripod's 0.3mm

displacement at a lfoot distance from the pivot point. In short, the mass penalty of the

mechanical stop would be larger than the damping mechanism itself. When modes skew to

the plane of the washer are considered, the non-planar tensile stresses in the piezoelectric

must also be constrained. This would demand even more bulk from the prospective

mechanical stop in order to constrain the tripod in three dimensions.

In conclusion, the inelegance of the mechanical stop and the overwhelming labor

involved in circumferential poling, discontinued the piezoelectric washer design.

2.1.4. ALTERNATIVE "SMART JOINT" DESIGNS

This section will briefly assess two alternative "smart joint" designs that have

equivalent dynamic properties as the piezoelectric washer, but different manufacturing

problems. The preliminary assessment has indicated that the piezoelectric sleeve of figure

24 and the equivalent piezoelectric strut of figure 25 are difficult to manufacture.
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The sleeve design in figure 24 is similar to the washer in that both designs use

circumferentially poled cylinders or disks as the damping element. The sleeve, bowever, is

sheared against the tripod's axel and through the radius of the cylinder, whereas the washer

is sheared through the thickness of the disk. Also, the sleeve's electrodes are placed on the

inside and outside cylindrical surfaces, as opposed to both sides of the disk.

Sizing the component according to elasticity equation for a thick-walled cylinder

derived in reference [ 19],

f r 2 r 2 _1
K o = 400kNm o... ,.= 4rcGL| _-_2 , (25)J

_. Fo_a -- r m j

yields the following sleeve dimensions: r,,, = 0.25", ro_, = 0.5", and L = 0.9".

Poling !

____ ____ __ _eZOe_ O_tearing

Figure 24. The sleeve is poled in the radial direction to exploit the shear mode of
piezoelectric damping.

In addition to circumferential piezoelectric poling, the sleeve damper would also require

a new tripod strut mount to accommodate the larger piezoelectric's length (L = 0.9"). With

the washer design, the fixed boundary condition on both sides of the disk is ensured by

preloading or tightening the bolt. The sleeve, however, has no preloading mechanism.

Glue layers, that bond the inner surface to the tripod bolt and the outer surface to a

modified tripod-end piece, would unfortunately absorb strain energy that could be used to

actuate the piezoelectric. Shearing electrode surfaces could also present more difficulty

over the easily accessible piezoelectric washers. Thus, the device was discontinued.

For a given washer or sleeve there exists an equivalent l_iezoelectric strut, orthogonal to

the tripod strut, and separated from the tripod bolt by distance r. The strut's dimensions, A

and L, and moment arm, r, are sized with the equivalent stiffness equation (26).
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Figure 25. The equivalent piezoelectric strut.

GJ EA .2
1"- (26)

t L

When the 400kNm stiffness is substituted into Equation (26) the optimal strut

dimensions are: diameter = 0.5" and L = 5.2" for a moment arm r =3". Poling the device

in the 3-3 direction is simplified by gluing wafers in series to form a stack with minimal

electric field flux loss. The buckling loads on such a slender strut would require the design

of high bending stiffness reinforcement with negligible axial contribution.

2.2. POTENTIAL DAMPING DEVICE: SIX-AXIS VIBRATION ABSORBER

The six-axis proof mass vibration absorber with six piezoelectric dampers was born out

of the need to create an energy sink for the heavy (90kg) apex mass undergoing large

displacements. Displacements over 4 times those found in the back plane, have been

determined from ASTREX's eigenvectors. Preliminary finite element analysis of the six-

axis stewart platform configuration indicated that an effective damper stiffness of 1.5N/um

would channel over 50% of the total strain energy in the piezoelectric material for several

modes under 50Hz. Theoretically, this means that modal loss factors as high as 20% are

attainable. Mode shapes and loss factors that are representative of their corresponding

frequency region, are shown in figure 27 in the next section.

The six-axis proof mass damper design in figure 26 consis.ts of an already existing 90kg.

balancing mass suspended from the interior of the 24"x24"x24" triangular apex housing by

six flex-tensional damping devices. It should be noted that the 90kg. mass primary

purpose is to balance the ASTREX testbed on its air bearing ball joint. The ball joint is

connected to the center of the hexagonal primary truss which is elevated above the floor by

a twenty foot supporting post.
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TheStewartbridgeconfigurationyieldsthemaximumstrokecapabilityavailableto the

six axisdamperdesign. This optimal stroke/actuationconfigurationwasslightlymodified

to accommodatethegeometricalconstraintsof thecongestedapexinterior. (seefigure 26)

If the distance,d, betweenadjacentstruts in eachof the threeorthogonalstrut pairs is

decreased,therotationaleigenvaluesof theproof massdecreasedueto thedecreasein the

system'seffectivemomentann. This yieldsamoreeffectivedamperfor the low frequency

rotary movements. The tradeoff is the increasein static stressesof the dampersdue to

gravity loads. Thedistanceversusstressoptimizationfor themodifiedStewartbridgewas

not investigated,sincethedimensionsof thedampingdevicepreventedtheaforementioned
distancereduction.

Figure26. (a) Apex. (b) Six-axisvibrationabsorberwith 90kg.proofmassattachedto
apexhousinginteriorby6 piezoelectric-baseddamper/actuators.

The applied static and dynamic componentforcesneedto bedeterminedbefore the

actualpiezoelectricandcomponentpropertiescanbedetermined.The total force will be

used in chapter 3 to calculate componentstresses. The static forces applied to each

componentareeachdependenton theorientationof ASTREX. For this application it is

importantto designeachcomponentfor themaximumforceinducedby staticgravity loads

and dynamic operatingloads. In order to accomplishthis andkeep thepiezoelectricin

compressionunderdynamicloads,preloadstressesin excessof the50MPadesignlimit are

required. In the laboratory,however,eachof six actuatorscanbepreloadedseparately

accordingto the total static anddynamic appliedforce. If too muchpreloadis usedthe
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piezoelectricmaydepole. If too little preloadis used,thepiezoelectricmayfail assoonas

thedeviceflexesin tensionasin equation27.

0 < crpi,_o < cr_.eo_,,_,,o, = 50MPa (27)

Multiplying the peak strut displacement on the torquer to strut transfer function by the

maximum operating torque of 37.5Nm, yields the dynamic force in the six components of

275N. When ASTREX is in its 30 degree laboratory configuration, the six axis has the

following static strut forces: The top two struts are in 900N tension, the lower strut pairs

are in 600N compression. Maintaining an approximate 10% factor of safety for the

loading, the top struts need to be designed with 1300N of tension (piezoelectric

compression), and the lower strut pairs need to be designed with 1000N of compression

(piezoelectric tension). The best device, as designed in chapter 3, will have adjustable

tensile and compressive preload capability. For instance, the lower strut pairs will need

compressed preload springs to avoid piezoelectric tension, while the top struts will need a

preload spring in tension to avoid piezoelectric depolarization.

After the preliminary device design and piezoelectric size was determined acceptable,

the feasibility of shunting circuits for the piezoelectric dimensions must also be determined.

Sizing the inductor, L, and resistor, R, for resonant circuit shunting according to the

formulations described in chapter 1, yields: L = 0.4kH, R - 700kf2 and C = 6.8pF

(inherent piezoelectric capacitance). For resistive shunting, a resistor, R = 917kfL is ideal.

Although the resistors are accessible, the inductors would weigh 300g, unless an active

inductor scheme described in chapter one was used. Despite the feasibility of the resonant

circuit, the broadband damping of resistive shunting was used for the sake of controller

gain stabilization.

2.3. DAMPING PERFORMANCE: SMART JOINT VERSUS SIX-AXIS ABSORBER

In order to decide which damping scheme to attempt to build, the two designs were

evaluated according to their ability to absorb strain energy from performance-sensitive

modes. Recall equation (5), that states that the system loss factor is proportional to the

fraction of the total strain energy in the piezoelectric for a given mode. Although only three

modes are listed in figure 27, the trend of six-axis vibratiorL absorber dominance is present

in all modes. The potential merit of the six-axis absorber obviously exceeds that of the

washer design. In the next chapter the design of the six-axis absorber and component is

presented.
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Mode#13

f = 29Hz

r/s=,. = 19.4%

r/=_,_,., =4.2%

Mode #23

f = 42Hz

r/6=_, =7.2%

r/w=h,,., =0.042%

Mode #40

f - 77Hz

r/8_.. =0.42%

r/w,_h,,,, =0.008%

Figure 27. The washer and the six-axis vibration absorber design are compared.
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CHAPTER 3

DESIGN AND ANALYSIS OF THE FLEX-
TENSIONAL COMPONENT

The most critical part of six-axis proof mass damper design, described in chapter 2, is

the component design of the six damping devices. The device design is complicated by the

fact that piezoelectric material alone is too stiff and brittle to be used as a low-frequency

damper. It is desirable to tune the vibration absorber to 30Hz. A 30Hz tuned vibration

absorber will sag about 250micrometers in a one-gee field. This deflection implies a

material strain for greater than the ceramic will allow. Thus, a properly designed stroke

amplification device is essential in reducing the device's stiffness and increasing its travel.

4

./L." 5 2

Figure 28. Illustration of the prototype flex-tensional piezoelectric stroke amplification
device. Parts include: 1. One 16-layer piezoelectric stack with two steel shims. 2.

One steel flex-tensional stroke amplifier. 3. Two preload springs. 4. Two
threaded steel rods with adjustable mechanical stops. 5. Axial stinger.
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3.1. DESIGN DETAILS OF THE FLEX-TENSIONAL DEVICE

The role of each of the five parts described in figure 28 and their associated design,

manufacturing and assembly considerations will be assessed in the following five

paragraphs:

Design Feature #1: The role of the piezoelectric stack is to provide resistively-shunted

passive damping. The design uses mechanical amplification to reduce the stiffness of the

stack in order to meet the 30Hz target eigen-frequency of the six-axis tuned mass damper.

This, in turn, creates large critical stresses in the piezoelectric. Reducing the stack's

stiffness may also be achieved by increasing its length and decreasing its cross-scctional

area. This design is limited by a requirement that the material stresses are no greater than

50 MegaPascals (MPa). This requirement ensures minimal performance loss due to

hysteretic depolarization. Buckling and shear failure must also be considered for slender

stacks.

Another design consideration for the piezoelectric material is to have the appropriate

number of capacitors (stacks) to balance the tradc-off between gluc-layer strain encrgy loss

and large capacitor thickness fringing field loss. The glue layers between the 16 wafers act

as springs in series with piezoelectric. A 16-wafer piezoelectric stack was the engineering

judgment. The glue-layers gave the piezoelectric stack a longitudinal coupling-coefficient,

kas, of 0.59 as opposed to the nominal material value of 0.71. This reduces the available

piezoelectric peak loss factor fi'om 35% to 21% as given by equation (5), chapter 1.

Design Feature #2: The role of the steel flex-tensional stroke amplifier is to provide the

necessary amplification to give the piezoelectric structural integrity and low stiffness.

Stroke amplification in the device equates to a strain reduction in the piezoelectric. The

ideal stroke amplifier would consist of beams with infinite axial stiffness connected by

perfect hinges so that all the component's strain energy would be concentrated in the

piezoelectric stack. This maximizes the peak component loss factor. A realistic

component, however, has the following design criteria: 1. The lever angle is selected

according to the analytical model, equation (49), so that the desired effective stiffness is

realized. 2. The sum of the axial stiffness of the flexures is much greater than that of the

stack. 3. The bending stiffness of the flexures is much less than that of the component. 4.

The flexure stresses are less than their respective yield stresses. To meet these

requirements, the stroke amplification device consists of a monolithic piece of steel, which

is carved out of quenched and tempered 40 Rockwell steel by a machining process called:

wire Electron Discharge Machining (wire-EDM).

Design Feature #3: The role of the two preload springs is to ensure that the

piezoelectric stack remains in compression under normal loading conditions. This also
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keeps the flexures in tension. The optimal design for the spring is a mile high spring with

negligible stiffness. When such a combination is squeezed into the device, the preload

requirement is met with negligible device stiffness contribution. Such a spring is limited by

practical assembly procedures which require pronged pliers insertion to shorten the spring

temporarily for insertion into the EDM'ed part. Spring coil spacing must be large enough

to allow for a wrench adjustment of the mechanical stops.

Design Feature #4: The two mechanical stops are adjusted to prevent accidental

overloading of the device. The maximum disturbance excitation of 28 ft.lbs, plus gravity

load yields the component's maximum axial displacement of 0.3mm. Motion in excess of

this number is inhibited. The mechanical stops are adjusted by wrench and locked in place

with adjacent locknuts.

Design Feature #5: The role of the axial stinger is to suspend the 90kg. mass according

to the modified Stewart bridge configuration. High axial stiffness and low bending

stiffness of the stinger minimizes strain energy sharing. Low bending stiffnesses can be

obtained by using a pinned flexure at each end of the stinger.

3.2. DEVICE ANALYSIS: ANALYTICAL TRUSS MODEL

Three different methods were investigated in designing the component. In this section,

a simple truss analytical model is useful for preliminary design purposes. A NASTRAN

finite element model, presented in 3.3.1, accounts for all stiffnesses. This model is

upgraded in Section 3.3.2 to include the unmodeled flexibilities. In Section 3.3.3, the

finite element model is used to optimize the component design.

3.2.1. KINEMATIC DERIVATION OF EFFECTIVE STIFFNESS

If it is assumed that the bending effects contribute negligible stiffness, the effective

stiffness of the mount is easily determined through simple kinematics employing

linearization for small displacements. Referring to figure 30, the vertical and horizontal

displacements of each element are related as

S, = 2/.,, sin(0) - 2(L, - S,)sin(0 - S0) (28)

L h + Sh = (L° - di°)cos(0 - SO), (29)

where the kinematic constraint ensures that the elements remain connected during

displacement.
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Figure30.

,,j/

Schematic diagram showing mount in deflectext and undeflected conditions.

Expanding the sinusoidal terms in (28) and (29) yields:

S, = 2/_,. sin(0) - 2(L_ - Sa)(sin 0cosfi0 - cos 0sin SO) (30)

Lh + Sh = (L, - So )(cos 0cos SO + sin 0 sin SO). (31)

Linearizing (30) and (31), assuming sins __=6 and cos6 __=1, and neglecting terms in 62,

yields

8, = 2/.,. sin 0 - 2/_,, sin 0 + 2/.,, cos 0_0 + 2Sa sin 0 (32)

Lh + Sh = L. cos 0 +/.,. sin 0_0 - ao cos 0 (33)

Canceling terms and substituting Lh = La cos 8, yields

_v = 2Lo cos 0_50 + 2a_ sin 0 (34)

ah = L. sin 0a0 - _. cos 0 (35)

Dividing (35) by 0.5tan 0 yields:

2L. cos 0S0 = 23h + 2_,, cos 2 0 (36)
tan 0 sin 0

which is then substituted into equation (34) and simplified with sin e 0 + cos e 0 = l to yield:

_ =2( Sh + So _
k,tan 0 sin0) (37)

For a force

F/2 sin 0, and that borne by the piezoelectric stack is F/tan 0.

of the piezoelectric stack and the lever arms being

K,,,_ k = F,,,,a/8,,_k= F/tanOS_ k

F applied at the top of the device, the load transmitted in each lever arm is

The respective stiffnesses

(38)
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K a = F]2 sin 0 _o (39)

Substituting Sh = 0.5S,_k into (38), and substituting (38) and (39) into (37) yields the

effective stiffness of the device

K,£ = 1 1 }-I+ (40)
(K,,o_k tan 2 0) (K. sin 2 0)

The relation in equation (40) allows for the desired effective stiffness to be determined by

the appropriate choice of lever angle, and piezoelectric and lever ann stiffnesses.

3.2.2. TRUSS MODEL DESIGN OF THE COMPONENT

Before equation (40) can be used to design the component, the stack and lever arm

stiffnesses must be defined in terms of their material properties as opposed to the relations

in equation (47) and (48). An expression for the bending stiffness of the flexures must

also be defined, in order to ensure that the axial to bending stiffness ratio of the lever arms

is large enough to channel strain energy into the piezoelectric. Additionally, this stiffness

ratio must be sufficiently large in order for the negligible bending stiffness assumption of

equation (40) to be valid. The previously mentioned stiffnesses needed in the design are

given as follows:

1. Piezoelectric Stack Stiffness: The piezoelectric stack is made up of 16 piezoelectric

elements glued together. The result is that the effective stiffness of the stack is reduced by

the glue layers, thus

K,,,,_, = I--J--/+ ---_/} -' (41)
['K I, Ks_

with Ks,.. determined through knowledge of the electromechanical coupling coefficient of

the stack, and the piezoelectric stiffness. For the stack used, the measured short circuit

SC

stiffness is K,'_k =65MN/m and the calculated stiffness is Kp = 9]MN/m. The

difference between these values is the attributed to the glue layer flexibility found in

equation (13). The glue layer stiffness is determined as K_, = 203MN/m (15 glue layers

in a 16 wafer piezoelectric stack).

2. Lever Arm Stiffness: The device is modeled with four arms, each of which

comprises four "dogbone" flexure elements. The effective arm stiffness is written as

Eb

K. = {L//2t, + L,,b/4t,,b} (42)
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where L:, L_,b, t:, and t_ are the flexure and semirigid beam lengths and thicknesses,

respectively. The lever arm width is constant: b = b: = b_.b.

3. Bending Stiffness: Bending in the device is taken up in the flexures of each arm.

In order to determine the total bending flexibility of the component, it is convenient to first

determine the stiffness of one of the 32 flexure/half beam elements illustrated in figure 31.

If the beam is assumed rigid, the non-negligible flexibility of the beam is due to its rigid

body rotation seen in the component's deformed shape.

_ =(.125P)L',, 0 =(.125P)L':, _,=0.5L,,(O )
3Ell 2EI/

Figure 31. Flexure and half rigid beam deflections.

The stiffness of a single flexure/half beam can be determined from K,,,, =. 125P / (_, + 6_).

The K,,,. bending stiffness is half the single lever arm stiffness (two flexures and one rigid

beam). Since their are eight lever arms in series with eight adjacent lever arms, the lever

arm is four times as flexible as the component bending stiffness. Thus, the effective

bending stiffness of the component:

_ e _ Eb,t:
K,..,=2K,,,, 4(_,+_,) (2L't,,,.+I.5L,,,E;_) (43)

The bending stiffness acts in parallel with the effective truss model stiffness as follows:

K 4 -- 1 1 }-'_- + K,..,. (44)
(K_tan'0) (K sin' 0)

However, the truss model assumption in equation (53) is violated if K,,, is nonzero. This

is not possible. Therefore, the design approach is to enforce the component's effective

stiffness, K,I r , to be "n" times as stiff as the effective bending stiffness Kb,, a :

K b,,a = K "_//nn, (45)

where "n" is a large number (n = 9 for the original design).
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The fractionof strainenergyin thepiezoelectricis derivedby substituting 6,,

K_ into the strain.energy equation:

_K(6)'_ = 1+
U-_ K'_,r.) K tan'0 K 'O

64 and

(46)

P P
where, 8 = and 6t = (47)

' K tan0

Equation (55) means that it is ideal to have the axial stiffness of the lever arm, K,,, to be

much larger than the axial stiffness of the piezoelectric stack, Kp: Therefore, the design

approach is to enforce Ko = RKp, where "R" is a large number (R = 3.5 for the original

design).

The applied force is magnified in the piezoelectric by the lever ratio: tan' 0. The force

in the flexures is magnified by a similar sin-'0 factor. Thus, the stresses in the

piezoelectric and flexures are, respectively:

P P
o'- , crt - . (48)

A tan 0 8A, sin 0

The design approach is to enforce some of the parameters which are suited to the

physical requirements of the implementation, and to determine the remaining parameters to

give the desired stiffness properties. The following parameters are selected to satisfy the

physical constraints of the congested apex interior (see section 3.5 for constraint details).

L , = 4Omm, b_ = b , = lOmm, E = 2OOGPa, t . = 4mm (49)

Using design curves similar to those illustrated in section 3.4, the initial flexure dimensions

were sized (L, = 5mm, t, = 0.8mm) to channel strain energy into the piezoelectric with

negligible component bending stiffness (n=9).

This design predicts the following short and open-circuit component stiffnesses:

K_ =8.1U/l.o'n; K_ = ll.26N/#m (50)

Through the procedures described in chapter 4, the following measured values were

obtained:

K_ = 9.57 N/l.tm; K 2 = lO.66 N/I.tm (51)

The discrepancy between the truss model and the data is attributed to the unmodeled

flexibilities and other factors that are discussed in chapter 4.
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3.3. DEVICE ANALYSIS: NASTRAN FINITE ELEMENT MODEL

A finite element model of the component was constructed to generate insight into the

important and negligible stiffness terms of the global stiffness matrix of the component. In

this section and section 3.5 the finite element program, NASTRAN, is used for outputting

bending and axial stresses and strain energies in the flexures to aid in an iterative design

optimization of the flexures. In addition, the finite element method will be used as a basis

for deriving a reduced order closed form analytical expression for the device properties

which incorporate bending terms (see Appendix I).

If you can imagine the three orthogonal planes, x=0, y--0, and z=0, sharing a common

origin at the device's centroid, the device becomes separated into eight equivalent quadrants

The following is true for any of the eight identical quadrants: 1. The stinger is one-fourth

the area and thus the component receives only one-fourth the total load. 2. The

piezoelectric length is halved, and area is one-fourth the original. 3. Only one lever arm

pair is needed for analysis.

By taking advantage of the component's three axes of symmetry, the analysis can be

reduced to the solution of the one-eighth component model seen in figure 32. Unlike the

truss model in the previous section, this model includes all bending stiffnesses and

constrains 19 at the two ends of the beam. This model also assumes that the large

rectangular blocks at the foot of the flexures have negligible flexibility.

0.25P, v

///_ _, L, A, I_

il t

'- (0.5b, 0St, 0.5L, 0.25A)p
(0.5A, 0.5L)spring

Figure 32. NASTRAN finite element component model includes all axial and bending
stiffness associated with six-degree of freedom slender beam-elements.
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Sincethetwoparallel leverarmshaveidenticaldisplacementpatternsunderloading,an

equivalentbeamwith doubledmaterialpropertiesis shownin figure 33.The spring'shalf

area (two springs per component)and half length cancel to give the original spring

stiffness.Thepiezoelectric'squarterareaandhalf lengthequatesto half thepiezoelectric
stiffness.

The model in figure 33 is now readyto build with two simpleaxial springsandthree
six-degreeof freedom beamelements(one for the semirigid beam and two for the

flexures),availablefrom theNASTRANfinite elementcode. Theboundaryconditionsare

applied, and the assembledbeamsand spring model is constrainedto move in the

remaining u and v displacements depicted in figure 33. A quarter load is applied to the

eighth model to generate deflection, stress and strain energy output for nodes and elements

of interest.

0.25P, v

/

/ t, L, 2A, 2I)3/
/
/

/_'_ I-'_ _2b, t, L, 2A, 2l)srb
/
J • .

/
/
/
/
/
/
/
/

/
/
/

Figure 33. The one-eighth model with combined lever arm properties.

Multiple finite element analyses with minor parameter variations can be used to generate

design curve data to replace the trial and error approach used with the simple truss model.

The lever angle, 0, piezoelectric stiffness, K, and general lever arm dimensions are

important to fulfilling the desired stiffness and physical constraints dictated by the structure

to be damped. These properties are initially approximated with the truss model as a first

design iteration. The influence of small flexure length and thickness variations on

component performance, however, requires design curves derived from finite element

software. The overall performance of the device is a measure of its ability to channel strain

energy in the piezoelectric, maximize its flexure stress safety factor, and minimize the cyclic

depolarization stress in the piezoelectric, while maintaining the desired component
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stiffness.Representativecomponentdimensionswereselectedto illustratehow theflexure

dimensions are fine-tuned with the aid of design graphs. The selectedcomponent

dimensionsandpropertiesare:

0=10"; b=2cm.; t.=lcrn.; L,=4cm.; K,=91N/I.trn (52)

The four graphs in figures 34 through 37, plot the stiffness, K_, the piezoelectric

strain energy fraction, U, / U,,._, the piezoelectric stress, or, and the flexure stress, cry,

respectively, for various typical flexure dimensions.

All of the graphs are divided into two spaces by a vertical line at t_ = O.06crn. This

vertical line separates the manufacturable space from the non-manufacturable space. The

machining required to cut the steel part, Electron Discharge Machining (EDM), is a

numerically controlled process with cutting tolerances of +0.005inches (+0.0125cm.).

Which means that a flexure thickness of 0.06cm (subjected to two cutting surfaces) could

potentially be as small as 0.045cm or as large as 0.085cm for any of the component's 32

flexures. The machinist claims that these tolerances are conservative by an order of

magnitude. Our experience with the finished product led to the engineering judgment of the

minimum 0.06cm flexure thickness requirement.

The component stiffness graph in figure 34, is also divided into two more spaces by a

horizontal line. This line separates unacceptable high-stiffness, high-frequency dampers

from acceptable, low-frequency dampers by the K_ = 3N / #m stiffness line. Although

stiffnesses as high as this value generate significant damping in the 40 to 50Hz range,

stiffnesses as low as K r = 1.5N /l.trn are optimal for providing significant damping near

30Hz. Thus, the design space for figure 34 is the lower-right quadrant. The graph depicts

several trends. For a given flexure thickness, the longer flexure provides more of the

desired flexibility. As the flexure thickness decreases from 0.06cm. to zero, the

component stiffness decreases rapidly due to inefficient axial stiffness. As the flexure

thickness increases from 0.06cm to 0.16cm and beyond, the stiffness increases

exponentially due to excessive bending stiffness. The point of counterflexure in the

stiffness curves is approximately where the peak strain energy occurs in figure 35.

Figure 35 illustrates that short flexures can channel more strain energy into the

piezoelectric, than long flexures. For example, a flexure l_ngth of L_ = 0.2cm. can push

92% of the strain energy into the piezoelectric, while a flexure length of L_ = 0.6cm. can

push 87% of the strain energy into the piezoelectric. The shorter flexure length

unfortunately requires a flexure thickness too thin to manufacture. Another trend is that the

larger flexure lengths have a broader range of flexure thicknesses to choose from that still
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generatesignificantpiezoelectricstrainenergy.Theshorterflexurelengthplot L_ = 0.2cm.

is more narrow and less robust to flexure thickness perturbations and modelling errors.

For thin flexure thicknesses in Figure 36, all the applied force is channeled directly to

the piezoelectric as expected for a component with negligible bending stiffness. As the

flexure thickness approaches zero, the piezoelectric stress approaches the truss model

prediction of 50.7MPa. As the flexure thickness increases, the bending stiffness of the

shorter flexures increases rapidly, thereby preventing more of the applied force from

reaching the piezoelectric stack. The horizontal line at 50MPa represents the upper limit of

acceptable cyclic depolarization stresses for the piezoelectric. This stress also represents

the beginning of partially non-reversible hysteretic depolarizations as described earlier in

chapter 2. Thus, the design space of figure 36 is the lower-right quadrant.

The flexure stress graph in figure 37, indicates that low flexure thicknesses have

unacceptably high axial stresses. As the flexure thickness increases, the flexure's cross-

sectional area increases, and its axial stress decreases. As the flexure thickness approaches

its optimal strain energy absorbing value, the flexure's moment of inertia and bending

stresses become noticeable as the total stress increases. The more noticeable stress increase

of the shorter flexure length (L_ = 0.2cm. 0.04 < tI < O. lcm.) is reason why the strain

energy performance in figure 35 decreases at such a fast rate for that case. A careful look at

the acceptable design space in the last three graphs, indicates that the L_ = 0.2cm. design

curve still has the highest strain energy performance with acceptably low effective stiffness

and piezoelectric stress values. If a safety factor of 3 is applied to the yield stress of

600MPa for annealed and quenched steel, a design stress limit of 200MPa confines the

design space in figure 37 to the lower right quadrant. Thus, figure 37 also illustrates the

L_ = O. 2cm. design option is still acceptable. However, if cyclic loading were considered,

typical S/N plots for steel (reference [20]) indicate that all of these designs would

potentially become at least partially plastic after 10'cycles. The lifespan of the design and

the advantages and disadvantages of elastic-plastic flexures were unaddressed in this

research. Instead a 150MPa design stress is enforced as a compromise between the risky

and conservative safety factors of the yield stress and fatigue design criteria, respectively.

Given the previously described design considerations, two design alternatives can be

extracted from the graphs. The high performance, decent robustness L/= 0.4cm. and

t_ = 0.06 design option or the decent performance, high robustness L_ = 0.6cm. and

0.06 < tt < O.08cm. design option are obvious design choices.
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Figure 34. Component stiffness versus flexure dimensions, where 0 = 10", b = 2cm.,

t , = Icm., L, = 4cm., and K = 91N / #m (Lf, is in cm.).

Percentage of Strain Energy in Piezo v.s. Flexure Dimensions

90{- ...........

85!

I
801--

_7,

....... . ............ . ........... i .......

: U--'O.6

0 ................................

5 ...................... '°

SO
i

NorvEDM

0.04 0.06 0.08 0.1
Rexure Thicl(ness, tf (Q'n)

0.02 0.12 0.14 0.16
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3.4. COMPARISON OF ANALYTICAL TRUSS AND NASTRAN MODELS

In this section the analytical truss component model is compared with the NASTRAN

finite element model in order to gain insight into the errors associated with the flexure's

negligible flexure bending stiffness assumption, and the rigid beam assumption of the truss

model. The four graphs in figures 38 through 41, plot the stiffness, K_r, the piezoelectric

strain energy fraction, U, / U,,.,, the piezoelectric stress, o', and the flexure stress, ere,

respectively, versus the flexure thickness. Each plot compares the analytical and finite

element solution for flexure length, L_ = 0.4cm. Othe_'ise, the piezoelectric and lever arm

dimensions are identical to those selected in the previous section.

The finite element plot in figure 38 shows that the truss model is in relative agreement

with the finite element model as the flexure thickness approaches zero and at mid-range

thicknesses 0.07<t_ <O.09cm. only. The effective stiffness and flexure stiffness

simultaneously approaching zero is trivial. However, their similar high magnitude slopes

both indicate that majority of the components stiffness is realized when a sufficient level of

axial strength is reached. At low flexure thicknesses beyond this strength threshold, the

finite element model is appropriately more flexible than the truss model, since the finite

element model, unlike a truss, accounts for the bending flexibility of the "rigid beams".

The finite element model is also appropriately more stiff at high flexure stiffnesses, since

the bending stiffness of the relatively thick flexures (not included in the truss) contribute

significantly to the component stiffness.

The percentage of piezoelectric strain energy is highly overestimated in figure 39, since

the truss's deformed shape directs most of the component's deformation into piezoelectric

deformation, instead of the flexibilities that are unmodeled by the rigid beam assumption.

As the flexure stiffness increases beyond tr = 0.08, the truss model piezoelectric strain

energy becomes increasingly overestimated since the piezoelectric deflection used in the

formula for this plot is increasingly overestimated as flexure thickness increases. This

piezoelectric deflection overestimation can be deduced from figure 40. Figure 40 shows

that the truss model assumes 100% of the applied load to be transmitted into the

piezoelectric via the lever angle. The corresponding finite element curve clearly indicates

that the truss deformation assumption is less valid as the increasing bending stiffness

inhibits load transfer to the piezoelectric.

The von Mises flexure stress is predominately an axial stress as modeled by the

relatively close correspondence between the analytical and finite element curves of figure

41. This is less true for t; > O.04cm., because bending stresses contribute significantly

more as the flexure thickness increases. For extremely large flexures, tI > 0.14cm., the

bending stress tapers off due to the excessive rigidity of the device in this range.
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3.5. THE NEW COMPONENT DESIGN

The original component that was designed with the analytical model, needs refinement.

The experimental results motivated a second component design as well. Unpredictably

high measured stiffnesses indicated that the truss model stiffness derivation was in error by

a factor of two. The corrected model was presented earlier in this chapter. The

experimental results are discussed in the next chapter.

The remainder of this chapter discusses improvements to the analysis and design of the

component. Section 3.5.1 discusses the undesirable flexibilities that were not accounted

for in the truss model design. The elimination of these undesirable flexibilities is also

discussed. Section 3.5.2 presents the design constraints and solution procedure using the

NASTRAN component model, that were previously discussed in section 3.3. This section

attempts to show how the original design's stiffness is reduced and performance fine-tuned

through an iterative design procedure accounted for in table 1.

3.5.1. LOCAL ELASTICITY ANALYSIS AND MODEL REFINEMENT

There are two undesired flexibilities in the above models that need to be addressed.

The relatively high tensile stress in the smaller flexure, modeled as a single beam element,

decays into the larger semi-rigid beam with low tensile stress. The depth of the decay,

defined as the footprint length, plus the original flexure's length yields the effective

length of the flexure to be used in the truss and finite element models discussed in earlier

sections. The second undesired flexibility is caused by the smaller flexure's eccentricity

with respect to the center of the larger semi-rigid beam. When the flexure is pulled in

tension, the off-center axial force induces an undesirable bending moment and compressive

bending stresses about the lever arm's neutral axis. The beam's curvature from the

bending stresses reduces the overall axial stiffness of the lever ann.

In either case, the unmodeled flexibility, l/K?, can be found by comparing the

overapproximated two-beam junction with two-dimensional stress elements on any

commercial finite element program. The total stiffness is calculated from the applied force

and total displacement quotient, K_,,a_ = (F/v)pEM. The stiffnesses, K_ = EAy/L/ and

K 2 = EA_,b/L,,_, are the nominal axial stiffnesses of the flexure and the semi-rigid beam,

respectively. The mystery stiffness, K?, is backed out of the following equation:

1 + (53)
K,o_ t= 1 + K---_
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The footprint length, La, = EA//K?, is added to the nominal flexure length, L r, to

determine the effective length of the flexure.

This mystery stiffness was added to the component finite element model. It is

essentially an unwanted flexibility in series with the piezoceramic stack. The finite element

model in figure 42(a) shows the bending tensile stress that makes the outer beam material

useless for transmitting strain energy into the piezoelectric.
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Figure 42(a). Finite element modeling of flexure/semi-rigid beam interaction. This old

design included beam eccentricities. The effective length, Left = 11.88ram, is 2.29
times as long as its nominal length, Lf = 5mm. (tf = 0.8mm; tsrb= 4.0mm; Lsrb=

40mm). The footprint length is 8.6 times the flexure thickness.

The deflected shape of the finite element mesh in figure 42(a), depicts the undesirable

effects from eccentric loading. The eccentric load induces both an axial load and a bending

moment throughout the semirigid beam. As the beam bends, the bending stress increases

the elongation at the top of the semirigid beam (flexure/semirigid-beam interface). This

undesirable elongation increases the overall flexibility of the lever arm, as well as the non-

piezoelectric strain energy throughout the component.

I I I I t I
I f i I i
I J I I II

, ,i,i ii _nn_ _±_

lg'./ / / I

P

Figure 42(b). Finite element modeling of flexure/semirigid beam interaction. Since,
this design is symmetric, undesirable compressive stresses are eliminated. The effective

length, Let'f= 5.88mm, is 1.18 times as long as its nominal length, Lf = 5mm. (tf =
0.8mm; tsrt,= 7.2mm; Lsrb= 40ram). The footprint length is 1.1 times the flexure

thickness.
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A close look at the deflected shape of the finite element mesh near the flexure/semirigid-

beam interface in figure 42(b), indicates that the flexure's relatively large axial strain does

not drop instantaneously to the lower strain level in the semirigid beam. The larger strain

level of the flexure decays gradually into the semirigid beam, thereby causing an increase in

the flexure's effective length. The new design doubles the flexure's potential to channel

strain energy into the piezoelectric, since the flexure's effective length is decreased by

about 50%.

3.5.2. SECOND ITERATION DEVICE OPTIMIZATION WITH NASTRAN

The NASTRAN finite element model of the component is a fast and most accurate

method in finding the optimal design of the component. The only drawback of the

NASTRAN model is that an iterative design procedure is necessary to optimize the

solution. Specifically, each program output directs subsequent input by trial and error, not

by design curves.

For a given piezoelectric stack, the finite element analytical model of the component

consists of four output variables (K,t r, Upiezo, (_piezo' (_f)' that are dependent on 10-input

variables (0, bf, bsrb , bp,ezo , tf, tsrb , tp,e_o , L r , L_rb , L,,_zo ). If the design problem were left

unconstrained, there would conceivably be four 10-dimensional design curves to be drawn

from the analytical finite element model. Unfortunately, graphing these curves is obviously

limited to three dimensions. For a three-dimension graphing package this means one

output variable can be optimized for any given two input variables. Therefore, the order of

the design problem must be reduced.

Dimensional constraints dictated by the congested apex interior, and imposed design

constraints based on engineering judgment were used to simplify the component design.

The intersection of the eight inch hexagonal plate in the apex interior (see chapter 2, figure

26) with each of three apex walls, creates a rigid corner base mount for the six

components. Mounting the components to the plate or the apex walls subjects the six-axis

design to plate bending flexibility. Since two components must fit side-by-side along the

eight inch base with adequate margins, the length of the component is limited to a

maximum of 5.5inches. This, in turn, constrains the piezoelectric length, Lp_.o, to 8 to 10

cm, depending on the shim design. Since wide "index finger" width shims can be

manually aligned easier than thin shims, during the component assembly process, Lp_,o

was constrained to 8cm.

The piezoelectric beam thickness, tp_zo was limited to 8mm. If the thickness exceeds

8mm, undesired flexibility is introduced across the preload spring bridge, which acts like a

simply supported beam with center point load. In addition, this would necessitate replacing
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the two-dimensionalanalyticalmodelwith a three-dimensionalfinite elementmodel. Of

course,smallerdiameterspringswould releasethis constraint. Unfortunately, the only

way to puta high loading,negligiblestiffnessspring,within theheightconstraint,is to use

arelativelywidespringbaseOf20mm. Theheightconstraintwasdictatedby:

ha,,_ , = 2(L_v,, sin(0) + d,o,,,o- ), (54)

where d,o,.,,o,,, the dual parallel lever arms separation distance, is 10mm. This gives

torsional stability about the device's centroid. If single lever arms were used, the torsional

strength would depend almost entirely on the shear mode strength of the piezoelectric

beam.

The 14mm piezoelectric beam width, bp,e_o, was sized to give the correct stiffness,

from the analytical model's lever ratio to effective stiffness correlation, as well as for

providing additional buckling stability for the device in its weaker torsional axis. It should

be noted that setting the thickness equal the width, tp,e_o= bpi,_o= 8mm, would be very

effective in reducing the component's stiffness at a less critical lever ratio. This option was

not investigated on the basis of enforcing reasonable torsional rigidity in the weak axis of

the component. The 14:8 ratio is a back-of-the-envelope correlation between the torsional

strengths in their respective axes.

The semi-rigid beam dimensions can also be prescribed to eliminate more variables

from the design optimization. Once the variable flexure length, Lf, the variable lever

angle, 0 , the constrained preload spring footprint (L_ = 20mm), and the total length of

the component (Lt_ t = 5.5inches), are selected, the semi-rigid beam length, L,r b, can be

determined by:

Lto,_ t = L,fp + 2(L,_ + 2(Lf ))cos(O) (55)

Since the ideal component has infinitely stiff beams connected by perfect hinges, the

thickness of the semi-rigid beam, t,_, should be in excess of 10 flexure thicknesses, tf.

If the semi-arbitrary dual lever-arm separation distance of 10mm were increased to 15 or

20mm, not only would the torsional stability increase via an increase in the system's

effective torsional moment arm, but the semi-rigid beam's thickness, t,_, would be

unconstrained. This option was not investigated in order to avoid creating an excessively

bulky product for difficult assembly onto the congested apex interior of the ASTREX

testbed. In addition, excessive stress gradients were also avoided, and an aesthetically

pleasing part was created by constraining the semi-rigid beam length by the following ratio:

t ,.______= t__L.r = O . 16 (56)

Lf
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Thus, t,,, = 7.2mm. was selected. Maximizing the beam widths to equal the full

width of the spring base, b I = b,_=20mm, is justified by considering the component design

in figure 43.

Keff
m
n

Kpiezo

Kaxial >> Keff

_ K bending << Kpiezo << Kaxial

Figure 43. Conceptual component stiffness diag,'am.

In order to channel as much strain energy into the piezoelectric as possible, the axial

stiffness of the flexures must be as stiff as possible.' However, the more the piezoelectric is

strained, the more the flexures absorb bending strain energy. In order to reduce this affect,

the bending stiffnesses must be minimized. Thus, the flexures must be designed with

maximum cross-sectional area and minimum moment of inertia to cross-sectional area ratio

(A),_x = max(bt) (57)

• t 2

([_),_=min(btJl=mm(-_). (58)(. 12bt)

The unconstrained finite element based design problem consisted of optimizing ten

input variables, ( O, bf , b,_ , bp_,o , tf , t,_ , tp_,o , Lf , L,_ , Lp_,o ), to obtain the desired output

variables (K, ff ,Upi,, o , (Ypi,,o, crf). After constraining the design problem, only three input

variables are independent: (0, t/, L i ).

Values of these three input variables are iterated in table 1 until the original design's

stiffness, stresses, and strain energy errors are corrected with the optimal values.

Optimization convergence is efficient if high-range performance-sensitive variables are

realized, first. Then the design can be fine-tuned with the low-range performance-

insensitive variables with minimal to negligible high-range variable updating required. To

this end, design mistakes are adjusted first, lever angles are corrected second, and flexure

lengths and thicknesses are adjusted last.
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Changed O Lf t z K_t r crp___ ar Up_o

Variable (degrees) (cm.) (cm.) (MN/m) (MPa) (MPa) (%)

STEP ONE: Correcting Design Mistakes

1 -- 21.8 0.50 0.08 10.52 22.16 61.08 71.3

2 b 21.8 0.50 0.08 12.13 22.04 37.79 81.2

3 tsrb 21.8 0.50 0.08 12.43 22.05 37.54 83.3

STEP TWO: Decrease Lever Angle and Effective Stiffness

4 0 20.0 0.50 0.08 10.35 24.17 42.74 83.35

5 0 18.0 0.50 0.08 8.31 26.97 50.16 83.32

6 0 16.0 0.50 0.08 6.53 30.40 60.10 83.11

7 0 14.0 0.50 0.08 4.98 36.22 79.76 82.51

8 0 12.0 0.50 0.08 3.67 42.12 101.32 81.69

9 0 10.0 0.50 0.08 2.58 47.55 125.10 80.47

STEP THREE: Decrease Flexture Length

10 Lf 10.0 0.45 0.08 2.61 47.32 131.10 80.53

11 Lf 10.0 0.40 0.08 2.64 47.04 138.59 80.49

12 Lt 10.0 0.35 0.08 2.68 46.67 148.17 80.31

13 Lf 10.0 0.30 0.08 2.73 46.10 163.16 79.77

14 Zf 10.0 0.25 0.08 2.77 45.52 178.14 79.22

STEP FOUR: Decrease Flexure Thickness

15 tf 10.0 0.25 0.07 2.67 47.07 173.07 81.56

16 tf 10.0 0.25 0.06 2.59 48.31 168.18 83.21

17 tf 10.0 0.25 0.05 2.52 49.25 165.10 84.12

18 tf 10.0 0.25 0.04 2.45 49.91 166.74 84.17

19 tf 10.O 0.25 0.03 2.44 50.32 179.40 83.13

STEP FIVE: Design Check

20 tf 10.0 0.50 0.07 2.51 48.51 123.9 81.36

21 tf 10.0 0.50 0.06 2.44 49.26 124.06 81.65

22 tf 10.0 0.50 0.05 2.38 49.82 127.08 81.25

Table 1. Iterative component design data from NASTRAN' finite element code with local

elasticity analysis included.

It is educational and physically insightful to describe the twenty-two iterations listed in

table 1. First, an introduction to the structure of table 1 is needed. It should be noted that

the value of only one input variable is changed with each new line. The design iterations of
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table 1canbedivided into thefollowing 5 majordesignsteps: 1.Theoriginal design on"

line 1 was corrected with the doubled lever arm width on line. The semi-rigid beam

thickness on line 3 was corrected with a new flexure thickness. 2. Component stiffness is

reduced by decreasing the high-range variable, theta, on lines 4 through 9. 3. The

manufacturable optimal solution on line 10, is found from the iteration in lines 10 through

14 (flexure machining is limited to 0.8mm thicknesses). 4. The optimal solution, line 18,

is found from the iteration in lines 15 through 19. 5. The iterations on lines 20 through 22

in path 2 serve as a check to see if the optimal solution is within the space spanned by the

semi-arbitrary iteration scheme. These six items are discussed in the following six

paragraphs, respectively.

Step 1: When the original design listed on line 1, doubles its lever-arm width to 2cm

and increases its semirigid beam thickness, ts_, from 4 to 7.2mm, the piezoelectric slrain

energy, and the component stiffness increase, while the stress in the flexures decreases as

expected by the decrease in bending curvature from the stiffer flexures.

Step 2: Lines 4 through 9 show the effect of reducing the high-range variable, 0, to

reduce the component's stiffness to the desired 2 to 3MN/m range. The lever angle needed

to attain this stiffness, was fortunately not less than the 10 degree minimum. The minimum

lever angle was determined by

Lo,.,, cos(0mt . ) _ 0.5tpi,, o, (59)

which prevents the steel device from contacting the middle of the piezoceramic beam. The

lever angle reduction from lines 5 through 6 shows some interesting trends. Here the lever

angle drops 2 degrees, the stiffness drops 1.78MN/m, the lever ratio (equation 1) increases

from 3.49 to 3.95, the stress in the piezoelectric and flexure increase, and the strain energy

in the shims stays steady at 3.11% of the total. As the lever ratio (L.R.) increases, the

fraction of strain energy in the flexures increases due to the larger stroke.

L. R. = v'_v_" (60)

U pitw

Step 3: Lines 10 through 14 shows a design iteration that decreases the flexure's length

while its thickness is kept constant. For example, in lines 9, 10 and 11, the flexure length

decreases from 0.50mm to 0.45mm to 0.40ram, the compohent stiffness and flexure stress

increase, the lever-ratio and piezoelectric stresses decrease, the piezoelectric strain energy

reaches a maximum of 80.53% for the middle iteration. This local maximum is considered

the optimal "manufacturable" device, since the flexure thickness is not too small for wire

electron-discharge machining. In addition to the data on line 10, this design has a lever
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ratio of 6.34 and 11.84%, 4.62% and 3.01% of the strain energy in the flexures, the semi-

rigid beams and the shims, respectively. Notice how the piezoelectric strain energy

decreases from the "manufacturable" optimal, as the flexure length is reduced to 0.5ram

and the total von Mises stress is built up to a maximum of 178MPa; 77% of this stress is

undesired bending stresses.

Step 4: Beginning with this iteration, the flexure thickness is decreased in order to

release the build up of unwanted bending strain energy. This increases the piezoelectric

strain energy to its optimal value of 84.17%, with a flexure thickness of 0.04mm. In

addition to the data on line 18, this design has a lever ratio of 6.40 and 7.60%, 5.06% and

3.15% of the strain energy in the flexures, the semi-rigid beams and the shims,

respectively. From the two optimums mentioned thus far, the trend suggests that for each

reduction in the flexure length there is a proportional reduction in the flexure thickness that

will yield even more strain energy than before. This investigation was unnecessary since

maximum design stresses for the piezoelectric and the steel flexures were realized. A

piezoelectric stress of 50MPa was enforced to prevent non-linear depolarization stresses

depicted in figure 1. Forty Rockwell quenched and tempered steel that yields at

approximately 600MPa was factored down to a maximum design stress of 200MPa to give

the flexures a factor of safety of about 3.0.

Step 5: The best design considered in this iteration set, line 21, has less strain energy

than the previously mentioned optimal value. This fact reconfirms that the optimization is

within the design space spanned by the two iteration paths, namely step 4.

The new component to be built can be reduced in size considerably, if the piezoelectric

shims are discarded. This can be done if machining tolerances are small for both the

piezoelectric as well as the flex-tensional component. Discrepancies between the

piezoelectric stack and the steel flex-tensional part can be alleviated by an appropriate

preload adjustment now available in the new design, depicted in figure 44. For a lever

angle of 10 degrees, the springs are incorporated into the rigid_block volume to keep the

bulk of the component as low as possible. The threaded spring plugs allow for easy

preload adjustment with a large flat-head screwdriver. The center hole in the top plug also

allows room for the threaded mechanical stop bolt.

The assembly procedure for the new device is as follows. 1. The threaded bolt is

screwed into the bottom of the device. 2. The lower threaded plug is screwed down until it

locks with the threaded bolt head. 3. The lower lock nut and travel stop nut is screwed

down and locked together at the desired height. The desired height is determined from the

stroke limit and the spring deformation that induces the desired piezoelectric preload. 4.

The two springs are placed in the component, on top of the lower threaded plug. 5. While
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thepiezoelectricstackis heldin its appropriateposition,theupperthreadedplugis lowered
to its desiredheight,andpiezoelectricpreloadis attained.6. Theuppertravelstopnutand
lock nutarescrewedontothethreadedbolt,andlockedtogetherat thestokelimit.

Stinger

Lock Nuts,

Resistor Wixe

Travel stop nut_

Threaded plug

Preload spring

Piezoelectric stack Threaded plug

Threaded bolt Threaded
Threaded Attachment hole

Figure 44. New EDM component design features include adjustable preload spring
plugs, tapered rigid beams, and no shims.
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CHAPTER 4

EXPERIMENTAL VERIFICATION OF
COMPONENT PERFORMANCE

Once the six-axis tuned-mass damper was designed, building and testing of the design

must be acceptable at three different levels before a prototype is ready to be built and

installed in the space structure to be damped. Level one: Piezoelectric material properties

manufacturing and testing by the manufacturer. Level two: Flex-tensional component level

manufacture and testing. Level three: Manufacture and testing of six redesigned

components/stingers, mounting blocks/bolts, and proof mass assembled in six-axis

configuration. The level one and two verification tests that axe described in this chapter,

attempt to validate flex-tensional piezoelectric actuator technology. The level three tests are

simulated in chapter five.

The microcomponent tester in figure 45 was used to measure component stiffness and

Figure 45. Interferometric Microcomponent Tester.
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loss factor as a function of frequency and shunting resistance. The piezoelectric actuator

drives a user-input sinusoidal or bandwidth limited white noise force signal through a load

cell and into the component to be tested. A laser interferometer setup is used to measure

component deflection. Component stiffness can be measured from these force and

displacement measurements. Component loss factor can be measured from the tangent of

the phase lag between these two measurements as by equation (75) in the next section.

The component tester is bolt-mounted onto a 4 foot wide, 12 foot long, 6 inch wide

optics bench. The optics bench is isolated from the dynamics of the laboratory building

floor with six rubber air tubes (12 inch outer diameter and 4 inch tube diameter). The low-

stiffness tubes give the bench a rigid-body mode of 1.5Hz. The optics bench dynamics

begin with a first bending mode near 82Hz.

Reacting off the left-hand mass, the piezo strut drives displacements into the load cell,

as previous depicted in figure 45. The load is channeled to the component via a m-bolt

steel cage assembly. The cage assembly is designed to accommodate target reflector

mounting directly above the component's stinger. The load then travels through the stinger

and the component to the the right-hand reaction mass.

4.1. THE COMPONENT TESTER HARDWARE

The component tester hardware consists of a piezo driver strut, a load cell, a zygo laser

and sensor, and data acquisition hardware as described in this section and in more detail in

reference [21].

A Physik Instrumente piezoelectric strut and Kepco BOP 500M bipolar amplifier is

used to drive the component with specified random or sinusoid inputs. Once the amplifier

is biased with -250 volts, a maximum input of 0 to -500 volts may be applied across the

strut's 1.5pF capacitance to yield maximum displacements of _+15Bm. Because the

amplifier has a limit of 80 mA, the piezo strut will not achieve full displacement at high

frequencies as shown in figure 46. In order to maximize the displacement capability of the

actuator, sinusoidal inputs were limited to the 1 to 40Hz range. It should be noted that

15p.m is approximately one 20th of the actual displacement the component was designed to

handle in space. This was not a concern, since the component's linear range was assumed

to encompass the range of experimental and design displacements. The expression relating

frequency, voltage and current drawn by the driving actuator is:

i = 2nfCV (61)

This equation was used to prevent damaging the driving actuator. If the input is sinusoidal

at frequency, f, the voltage is chosen such that i <_ 80mA, to prevent the actuator from
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buzzing (signal distortion). If the input is RMS, the voltage is chosen such that i <
7"--

(80/3)mA, to prevent the actuator from clicking (overload).

Piezoelectric Driver Displacement Limits

] Voltage

- _+15 _ Limit

,_. _ Current

+l.5_- Limit

40 400

Excitation Frequency (Hz)

Figure 46. Displacement limits in the piezo strut driven with a sine wave of

(250V)sin(2rffCV).

A load cell (PCB Model 208A02, SN 3633) was used to measure the applied

component force. The load cell was calibrated at 50.5mV/lb with a minimum test

frequency of 0.2Hz. The raw data is transmitted to a load cell conditioner and then sent to

a Gateway 2000 computer-based Tektronix 2630 Fourier Analyzer which is used for data

acquisition and Fast-Fourier transforms.

An AXIOM 2/20 laser-based measurement system uses interferometry to measure the

linear displacement of the component as depicted in figure 47. This system consists of a

two-frequency laser head, beam directing and splitting optics, measuring optics, receivers,

and electronics. The light beam emitted from the laser head is directed through

measurement optics and then to an optical receiver. The receiver provides an electrical

measurement frequency that is compared to a reference frequency from the laser head.

System electronics compare the frequencies and calculate the measurement. The signal is

amplified to a sensitivity of 2.048gm/V to accurately measure displacements within the

+20.481.tm range. Precise measurement data is updated at a 7 to 13 MHz sampling rate.

The raw data is transmitted to a Gateway 2000 computer, where a Tektronix 2630 Fourier

Analyzer transforms time-domain data into frequency domain data.

After the Tektronix box transforms data from the laser output, Ch. 1, and the load cell

conditioner, Ch.2, into the frequency-domain, the data can then be displayed with the user-

interface program. This program displays stiffness transfer functions (i.e. Ch.2/Ch.1),

and loss factor transfer functions (i.e. phase(Chl.,Ch2.)). Coherence transfer functions

between the input and output, and a spectral decompositions of the input and output were
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also available from the CTEST display to help search for various causes of component data

errors. The CTEST program also commands the Tektronix box to send a signal to the

Kepco amplifier to drive the piezo strut with user-supplied amplitudes and frequency

distributions.

TARGET _ fl +&$1

RmZCrOR < I (I I n

u_ INTERFEROMETER

TWO FREQUENCY
LASER

(BEAM SPL1TI"ER)

Measurement signal

[ft -(fl ±_fl)]/2
_v

v

Referencesignal(f'2-fl)

_@
fl

-- fl -,-Aft

I f2

F

FIXED

REFI..ECrOR

MEASUREMENT BOARD

I
/
..._.....d

B F..AM BOLDER

Figure 47. AXIOM 2/20 Block diagram: 1. The laser generates light of two different

frequencies with orthogonal polarizations. 2. One of the two frequencies fl, is

optically separated and directed to the target reflector. 3. The second frequency, f2,

is optically separated and sent to a fixed reflector and then rejoins fl at the

interferometer to produce an interference signal. 4. As the target reflector moves,

the returning beam frequency will be Doppler-shifted up or down by Afl depending

on the direction of motion. 5. Receiver changes f2 and (fl+ Afl) to an electrical

measurement signal (20 MHz + Afl). 6. Electrical reference signal from laser.

(20MHz) This signal is divided by 2. 7. Phase detector calculates phase difference

between reference signal and measurement signal. 8. Accumulator adds up the

phase differences and outputs u(t) measurement data in 32-bit binary words.

4.2. CALIBRATING THE COMPONENT TESTER

While calibrating the component tester, slop/stiction, hysteresis, directional stiffness

due to threads, and flexibility need to be checked. All these tests, except flexibility, can be
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conductedby theinsertionof a steelrod into thetestfixture andrunningtestsat different

frequenciesandamplitudes.Slop/stictioncanbe testedby inputtingaquasi-static(0.1to

1Hz)sinusoidalvoltageinto theactuatorandcheckingthedisplacementversusforce for

slop. This wasrepeatedwith different amplitudes.Hysterisiswascheckedin a similar

way,excepttheforceneededto beata higherfrequencylessthan200Hz. Thedirectional

stiffnessof the testapparatuswasremovedby trying different preloadsand comparing
measuredstiffnesses.The pointof zerostiffnesswasnot easilyfound without a trial and

errorbolt adjustmentof thetestfixture. Flexibility in thetestfixtureaffectedthemeasured

stiffnessof thecomponentasshownin figure48.

x U Kc l_d I/

Figure 48. Fixture stiffness Kf. represents the stiffness of the threads, linkages, table,
bolts and couplers. Kc is the component stiffness, f and x are measured output.

The fixture stiffness was determined experimentally to be about Kf= 45N/l.tm + 10%. The

error depends on the preloads from installation. The measured stiffness, K,,= f/x, was

substituted into equation (62) to correct for the fixture stiffness.

111,)
or, K c = K,,,Kf (62)

K l - K,,

The calculated value for Kc has an error associated with the 10% uncertainty in fixture

stiffness K / :

dK c =(OKclx(dKIl_ -1 dK I (63)

K,j (K,/x.) K--5

For example, if K c = lON/l.tm and K; = 45N#tm + 10% then

=(.os)
(64)
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4.3. COMPONENT TEST DATA

In order to verify the component design, stiffness and loss factor, test data was

collected as follows. First, the effective capacitance of the piezoelectric was calculated.

The resistor was selected from the following equation to tune the peak damping curve near

30Hz.

where p= 1,

p = RCo9

¢o=30Hz, C=15microfarads and R=390kfL

(65)

It should be noted that the

internal resistance of the piezoelectric capacitor was a negligible 0.245fL

Second, forty logarithmically-distributed resistors were selected about the p = 1 center

point, where R=390kfL More specifically, the first resistor used was 3.9k.Q to obtain data

at p--0.01. Similarly, the fortieth resistor used was 39(g)0k-q, to obtain data at p=100.

This approach was used to obtain data for two decades on both sides of/9 =1. In addition

to the short-circuit and open-circuit transfer functions, forty stiffness and phase transfer

functions were generated with each resistor using a thirty count average.

Two data points, 10Hz and and 42Hz, were semi-arbitrarily chosen to extract stiffness

and phase data directly off the respective transfer functions. These frequencies

demonstrated excellent signal to noise ratios. A seven-point discrete frequency average

was computed about these two frequencies to smooth the noise on the transfer function.

More specifically, stiffness and phase data at 9.25Hz, 9.5Hz, 9.75Hz, 10Hz, 10.25Hz,

10.5Hz and 10.75Hz were summed and then divided by 7 to eliminate the noise on the

transfer function. A similar procedure was done at 42Hz.

The stiffness magnitude and loss factor was determined from the complex stiffness,

K(co) = K(1 + irl(co)), output as follows.

][K(og)[[ = 4(Re(K(co))) 2 + (Im(K(co))):

Im(K(co))
r/(co) = tan(_t(c0)) = t,_ (66)

For reference, the classical definition of damping loss factor is

,(09) -1 (Energyl_'iP"d)/cycle (67)

2lr (Energ3_m,x,,o,,a)/© 'cle

The damping coefficient is one-half of the loss factor, _"_=.0.50, for small r/.

The following plots and experimental curve fits show the results of this procedure. The

10Hz data represented by x's, and the 42Hz data represented by o's, show negligible
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differences,from theexperimentalcurvefit. Thegeneralizedcouplingcoefficient canbe
determinedfrom theexperimentaldatabyequation(68).

2 Ksc

The non-dimensional stiffness curve fit was generated by substituting the generalized

coupling coefficient into the stiffness and loss factor equations of chapter one (equation (2)

and (3)).
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Figure 49. Nondimensional stiffness and loss factor data for experimental component data.

Although the stiffness change and loss factor are overestimated by the finite element

model, the curves are clearly indicative of the predicted first-order frequency-dependent
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stiffnesschangeandthebell-shapedlossfactordistribution. Theresultsaresummarizedin.
thenextsection4.4.

The piezoelectricstackwas testedby the SpecialtyEngineeringAssociates,Inc. to

verify materialproperties(reference[22]). The frequency-dependentimpedance,Z(c0),

wasdeterminedby driving the piezoelectricstackwith V(c0),anddividing by I(_). The

impedanceis ata minimumat thefirst axial resonanceor poleof thestack. Thefrequency
at whichthisoccurscanbeusedto calculatetheeffectivemodulusof elasticityof thestack:

f_,t, = _ D (69)

Substituting/a = pA into (69) and solving for E yields:

Es,aa = 4p _,L = 63.2GPa (70)

where, f po_, = 18.1kHz, L= 8cm and p= 7550kg/m 3 for the piezoelectric stack.

The nominal modulus for Channel Industries 5400 PZT is 65GPa. This error is welI

within the standard material scatter.

The generalized coupling coefficient of the piezoelectric stack was determined from the

phase of the impedance frequency-response, Z(o_) as follows:

- "o; - ; ; ,,
With a first axial zero frequency, f,,,_ = 21.7kHz, the coupling coefficient of the piezo-

electric stack is Kjj = 0.59. The published coupling coefficient for 5400 PZT is

K33 = O. 71. The discrepancy between the published and measured coupling coefficients is

due to strain energy sharing with the glue layers. The error can also be partially attributed

to material property variations.

4.4. COMPONENT EXPERIMENTAL RESULTS SUMMARY

This section presents a brief summary of the experimental results obtained from the

techniques described in this chapter. The experimental data and NASTRAN results in table

2, motivated the analysis refinements and new design modifications of chapter 3. The

results of these refinements are also presented in the third ccdumn of table 2.

Several conclusions can be made from the experimental results of table 2. The

component is much stiffer than intended. The two-dimensional finite element model's

overestimate of the piezoelectric loss factor can be accounted for by unmodeled flexibility

throughout the three-dimensional wire-EDMed part, and/or unmodeled flexibility in the
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componenttester. It shouldbenotedthattheflexibility associatedwith theflexure-rigid
beaminterfacehasbeenincludedin theNASTRANmodel.

[ DATA

K,c (N / lam)

Ko¢ (N / _m)

rip,, (%)

q_o,,, (%)

9.57

10.66

21.6

5.4

NASTRAN ] DESIGN #2

9.71

12.12

21.6

11.I

1.50

2.57

21.6

13.6

Table 2. Component results summary for the experimental data, the finite element model
and the new design.

Design #2, in table 2, includes five important modifications: 1. The lever angle is

reduced from 21.8 degrees to 10 degrees to obtain the desired component stiffness of

1.5N/um. 2. Due to the extremely low bending strain energy in the flexures, the flexure

lengths are reduced to channel more strain energy in the piezoelectric. 3. The entire lever

arm width is doubled to 2cm to increase the flexure's axial stiffness to bending stiffness

ratio. 4. The thick semi-rigid beam is also doubled in thickness. 5. The semi-rigid beam is

symmetric about the flexures in order to reduce the footprint length from 8.6 to 1.1 times

the flexure length as discussed in chapter 3.

The loss factor of the new design in table 2, increases only slightly over the

experimental results of the original design, since the damper's potential performance

decreases with an increase in the demanded stroke amplification.

In the next chapter the component's damping performance in the testbed is simulated

with the experimental component data and the new design values.
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CHAPTER 5

SIMULATED FREQUENCY RESPONSE
PERFORMANCE FOR ASTREX

Once the piezoelectric material properties have been integrated into the equivalent

mechanical model in chapter 1, the piezoelectric-based dampers can be assembled into the

larger finite element model of ASTREX. The ASTREX finite element model consists of

approximately 900 nodes and 400 elements as seen in figure 50. The frequency response

can also be derived from the finite element method.

/

/

/

Figure 50. Finite element model of ASTREX.
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5.1. FINITE ELEMENT FORMULATION AND SOLUTION ALGORITHMS OF THE

DAMPED TESTBED MODEL

The tripod struts are modeled with nine beam elements to accurately capture the third

bending mode around 100Hz. The backplane composite struts are each modeled with a

single beam element, since the second bending mode at over 150Hz is of no modeling

concern. The CROD beam elements have three displacement and three rotational degrees of

freedom at each end. Half the composite tube's mass is lumped at each node, in order to

produce a diagonal mass matrix.

The six hexagonal steel mirrors are each modeled with six triangular plate elements to

fit the shape smoothly without using highly distorted quadrilateral finite elements. The

three node triangular elements, CTRIA3 have five degrees of freedom per node. Bending,

stretching and twisting are modeled. Since shear deformations are not modeled, large thin

plates are used in the model assembly. One quarter of the steel plate's mass is lumped at

each node, in order to produce a diagonal mass matrix. Two dimensional CQUAD plate

elements were also used to model the steel plates of the tripod apex with minimal element

distortion. These quadrilateral elements consist of four adjacent triangular elements with a

statically condensed center node.

Rotary and linear dashpots and springs were used to model the airbearing that isolates

ASTREX from the dynamics of the support pedestal. Dashpot elements were also used to

model piezoelectric implementations as discussed in the previous section. In any event, all

damping elements used in this model are one-degree of freedom displacement or rotary

dampers that have proportional damping matrices in local coordinates.

After the local stiffness, mass and damping matrices are transformed into the global

degrees of freedom of the ASTREX model, the global finite element equations of motion

can be assembled as in equation (72).

where M,

respectively.

M.f + E.i: + Kx = f (72)

R, and K are mass, proportional damping, and stiffness matrices,

x is a vector representing generalized deflections (degrees of freedom) of

grid points or nodes. An overdot indicates time derivative. The vector f includes forces

and moments applied to the structure. The equation can be written in a state-space form as

given by

{;} 0 , ]tx}{o}
= _M-1K _M-1E + If (73)

such that X = AX + F (74)
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{x} [0 i] {o}where X= , A= _M_IK _M__E and F= if •

A transformation from physical degrees of freedom (n) to a modal state (m modes) can

be made by defining x = 4)r/; the modal state vector rl (m x 1) includes modal amplitudes,

and the column of modal matrix 4) is normalized with respect to the mass matrix M such

that 4)rM4 ) = I and 4_rK4_= A; I is an identity matrix, and A is a diagonal

eigenvalue matrix. Using the transformation, and multiplying by • r , equation (72) is

given by

_TM_/_ + CREW//+ 4)rK45r/= _rf

which from mass-normalization and assuming a proportional damping reduces to

i_ +[2¢_0 ],_+An=_': (75_

In the diagonal modal damping matrix [2_,,,,to], _d,,_ is a diagonal modal damping

factor matrix with m diagonal entries. The diagonal natural frequency matrix of the

structure, co, is the square root matrix of the diagonal matrix, A. Taking the Laplace

transform of both sides of equation (75) yields

[,s'+[2_.o_.]s+_],(s)--,,,':(,

Multiplying both sides by the modal matrix 4_, yields

_(,)-¢_(,- ¢[I,'+[2_,o_.]s+A]'¢':(,)

Let each eigenvector i, at the excitation degree of freedom e, be denoted 4_,.. Let each

eigenvector i, at the response degree of freedom r, be denoted _,. Since all the matrices

are diagonal, the equations are decoupled and the total response is the sum of the responses

at each mode. Summing the contribution of each excited mode to the overall response,

yields the transfer function equation used to generate the performance plots in chapter 5,

and determine peak dynamic component stresses in chapter 2.

.7,(s) = _( 4)"_r }f,(s) (76), s2+[2(¢_),o.,,]s+A,

where, ..oI(¢,_,), a _-(n), = n,,,,o u_,_, ,

The influence of passive damping, as mentioned earlier does not end with maximizing

_',_ at a target to such that the spacecraft's response is minimized. In fact, any passive
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damping implementation must be reported to the controls engineer for updating the control

equations. The modal damping factors of the manufactured damping device (See chapters

3 and 4) were carried through the following matrix manipulations to update the control

matrices for the control engineer responsible for designing a control system that rolls off at

a frequency of high passive damping.

The equation (75) can be written in a state space form as follows.

1 77

In compact notation,

(77)

X,, = A,,X,, + F,, (78)

{;} ,] {0)whereX,7= , A = -[2_',,.o9] and F,= 4)rf '

modal matrix _, a force on the structure, theoretically, affects all modal states.

Due to the fullness of the

The participation of a force or moment, applied in certain direction on the structure, in the

modal state form can be explained as follows. Let the generalized displacement vector be

written as x = {U,V,W, v/,O,O} r, where U,V,W are the displacement vectors along

local x, y, z coordinates, and gt,0,4_ are the slope vectors about the coordinates,

respectively; each vector has dimension equal to number of nodes (numnodes x 1). The

modal matrix 4_ corresponds to this particular arrangement of the generalized displacement

If a force is applied at location j in the local z direction, the force vector f isvector x.

given by

0

0

0

f.,,

0

0

(79)

The number of zeros in the top of equation (79) equal to 2*numnodes + j - 1, and in the

bottom equal to 6*numnodes - {2*numnodes + j}. This can also be written as a unit

vector with all zeros except at the location of z direction at j node, multiplied by the
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magnitude f<_. Symbolically, it is written as f<,,, = S,,<,, ]f <,,,i" This representation helps-

in relating F,7 to applied force directly.

{o)F, = crs.o, f_,,

Thus only the {_j} displacement contribution of the modal matrix 4) is effective. For

multiple force and moment inputs at different location or in different direction, a summation

is carried out with appropriate placement unit vector:

{ o t
where d signifies the degree of freedom at node j. Effectively, a unit column-vector matrix

is created leading to equation,

[0]F, = CrS..,_,,, u = B,u
(8O)

in which u is the actual control input vector (non-zero terms in f of equation (72)), uvmat

indicates that a matrix having unit vectors as columns is generated, and B, is the control

input matrix in the modal form. The force vector

0 F (81)

In this equation, B is the influence matrix which could also be formulated from equation

(79).

The output equation is given by y = ax + bS: + e_. The a, b, e matrices provide the

combination of displacement, velocity, and acceleration output from the sensors. The

equation can be written as

y=[a b d¢ +[0 c

y:[a b]X+[O c][AX+F l

Using the transformation relation
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andsubstitutingfor X, theoutputequationcanbewrittenin themodalform as

Y = CoX o + D,Tu (82)

This equation is used to obtain response of the system. In summary, control system

matrices are rewritten:

[o ;] {0 t
C o={(ao-coA) (bO-cC)_t)}, D r=ceB,.

A compact form (quadruple) is generated by placing these matrices in a system matrix,

(83)

(84)

These are the matrices used in state space control system design. Notice that the

passive damping implementation will show up as two non-negligible damping terms: one

on the A 0 matrix diagonal, and one term from the C o matrix. This makes the controls

engineers goal of inverting the plant a more realistic objective.

5.2. LINE-OF-SIGHT PERFORMANCE TRANSFER FUNCTIONS

The effect upon the plant transfer function (from control actuator to error sensor) of

inserting a six-axis isolation stage to support the payload at the secondary mirror, is

simulated in figure 51, using experimentally measured component characteristics. This

simulation employs a NASTRAN dynamic model of the ASTREX structure. This model

has not been tuned with a modal survey. The results are thus at best representative, and

certainly not trustworthy in detail. A control engineer, faced with these two plants, will be

happy with neither, but would certainly prefer to compensate the damped plant.

The solid trace in figures 51, 52 and 53 represents the predicted damping effect of the

six-axis vibration absorber with resistively-shunted piezoelectric damping (R = 360kff2).

When the vibration absorber's proof mass is rigidly mounted to the structure, the

undamped effect is predicted by the dash trace in figures 51, 52 and 53. When the
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piezoelectricstacksareshuntedwith zeroresistance,theshort-circuiteffect is predictedby

thedash-dottracein figures5I, 52, and53.
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Figure 51. ASTREX simulation using experimental stiffness and damping data of the

component. The solid trace shows the damping performance of the six-axis
vibration absorber with resistively-shunted piezoelectric damping (R - 360kf2).
The dash trace represents the undamped dynamics with the vibration absorber's
proof mass mounted rigidly to the structure. The dash-dot trace represents the

undamped dynamics of the structure with short-circuit piezoelectrics.

The effect upon the plant transfer function (from control actuator to error sensor) of

inserting a six-axis isolation stage to support the payload at the secondary mirror, is

simulated in figure 52, using the new design component properties described in chapter 3.

The design modifications are summarized as follows: 1. The lever angle is halved to obtain
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the desiredcomponentstiffnessof 1.5N/urn. 2. Due to theextremely low bendingstrain

energyin the flexures,theflexure lengthsarehalvedto channelmorestrainenergyin the
piezoelectric.3.Theentireleverarmwidth isdoubledto 2cmto increasetheflexure'saxial

stiffness to bending stiffness ratio. 4. The thick semi-rigid beam is also doubled in
thickness.5. The semi-rigid beamis symmetricabouttheflexuresin orderto reducethe

footprint lengthfrom 8.6to 1.1timestheflexurelengthasdiscussedin chapter3.
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Figure 52. ASTREX simulation using new design stiffness and damping values of the
component. The solid trace shows the damping performance of the six-axis

vibration absorber with resistively-shunted piezoelectric damping (R = 360kf2).
The dash trace represents the undamped dynamics with the vibration absorber's
proof mass mounted rigidly to the structure. The dash-dot trace represents the

undamped dynarmcs of the structure with short-circuit piezoelectrics.
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5.3. ISOLATION SYSTEM PERFORMANCE TRANSFER FUNCTION

An alternate use of the six-axis stage is for isolation; it is possible to isolate the control

system from unpleasant structural dynamics of the ASTREX structure. This is summarized

in figure 53, in which the actuator torque is applied not to the tripod apex but tO the 90kg.

suspended mass that is presumably supporting the secondary optics. In this plant, the

isolation properties of the six-axis stage lead to very clean plant dynamics above 40Hz, and

would permit robust closed-loop control.
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Figure 53. ASTREX simulation using the new design stiffness and damping values of the
component. The solid trace shows the damping performance of the six-axis

vibration absorber with resistively-shunted piezoelectric damping (R = 360k£2).

The dash trace represents the undamped dynamics with the vibration absorber's
proof mass mounted rigidly to the structure. The dash-dot trace represents the

undamped dynamics of the struelm'e with short-circuit piezoelectrics.
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CHAPTER 6.

CONCLUSIONS AND RECOMMENDATIONS

Passive damping is important for space structure performance and controller stability

robustness requirements. The ability of resistively-shunted piezoelectric damping to meet

these requirements was investigated. A summary of contemporary passive damping

implementations for large space structures was presented. This paper has presented the

piezoelectric passive damping modeling approach and its modifications for finite element

software implementation. The dynamic behavior and passive damping needs of the

ASTREX testbed were addressed with a comparison of two potential damping design

options: the piezoelectric joint and the tuned piezoelectric vibration absorber. The latter

design was designed, manufactured and tested at the component level.

An analytical truss model was developed for the vibration absorber components. The

model was used iteratively to optimize the lever ratio and piezoelectric strain energy of the

component with respect to dimensional requirements and desired design features. A finite

element model of the component was used to verify the design and to ensure stress limits

were not exceeded.

The finite element model was also used to generate design curves that depict the optimal

flexure dimensions that maximize the piezoelectric strain energy subject to stiffness, stress

and manufacturing limitations. Several trends were noted from these design curves. The

effective stiffness curves illustrated that longer and thinner flexures decrease the effective

stiffness and stubby flexures increase the effective stiffness. The stiffness curve is

relatively constant for the middle flexure values where the transition from axially-dominated

to bending-dominated flexure properties occurs. This transition zone is also where the
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piezoelectric strain energy is maximized. The strain-energy curve for small flexure

dimensions that approach zero is analogous to the narrowband damping provided by

resonant LRC circuit piezoelectric damping. Just as the peak damping is largest over the

small range of frequencies influenced by the resonant circuit, so also is the strain energy of

piezoelectric maximized over a more limited range of flexure thicknesses. The virtues of

the strain-energy curve for large flexure dimensions is analogous to those provided by the

broadband damping of resistive RC circuit piezoelectric shunting: both are insensitive to

minor parameter variations, frequency and flexure thickness, respectively. Piezoelectric

stress plots illustrated that the amount of applied load that reaches the piezoelectric

decreases with increasing flexure bending stiffness. Flexure stress curves illustrate that

stress is conveniently minimized when piezoelectric strain energy is maximized. Axial

stresses and bending stresses increase as the curve shifts to the left and the right,

respectively. One important limitation to a small-flexure, high-performance component

design, is ensuring that the stress in the flexure does not exceed the yield and fatigue stress

limits. The EDM technique also excludes small flexure designs from the manufacturable

design space of the component.

A local elasticity analysis of the beam/flexure interface was made to include the lever's

"footprint" flexibility in the component models. The results of this study, motivated a new

design that used the original design as a starting point. A trial and error procedure was

conducted to illustrate how the new design was found from the original component

properties.

Test results indicate that it is challenging to channel a large fraction of the structural

strain energy into the piezoceramic material without sacrificing some strain energy to

residual parallel and series non-piezoelectric stiffnesses. Despite this discrepancy in

component performance, the first-order stiffness change and bell-shaped loss factor curve

were verified as predicted.

This report has addressed some of the practical considerations encountered when

attempting piezoceramic passive damping of a large flexible structure. The report presents

a flu'st-iteration solution to these problems. Future work will use this as a starting point.

Another interesting topic that requires interesting research is developing a

magnetostrictive actuator. The actuator/damper would not require a new flex-tensional

component as the piezoelectric and magnetostrictive share similar material properties. The

potential advantage of magnetostrictive damping is its ability to absorb strain energy

without the glue-layer strain energy sharing problem inherent to piezoelectric stacks. The

potential disadvantages need investigation. For example, the number of required coils

wraped about the magnetostrictive must be numerous enough to efficiently transform the
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magneticfield into an inducedcurrent. Commandedcurrentsourcescouldmakethestack
too bulky for practical steelflex-tensionaldesign. Fortunately,a magneticfield source
couldbesuppliedby magnetsthatwouldreplacetheshimsin thepiezoelectricdesign.The

returnpathof themagneticflux couldalsobeconvenientlychanneledthroughtheeffective

"arc-bridge"providedby theeightleverarmpairs.
Theeffectivenessof this designwouldalsobedependenton finding or developinga

low-stiffness,high-magneticconductivity material(ideally, identicalto steelin termsof

magneticconductivity) to fill the"dogbone"shapescut out of the steelduring leverarm

manufacturing.Without suchanimplementation,thereturningmagneticflux pathwould
beforcedto arcacrossthethin flexures.
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APPENDIX I

ANALYTICAL FINITE ELEMENT COMPONENT
MODEL

An analytical finite element model was constructed to study the effects of bending and

axial]bending coupling that are not present in the analytical truss model. This appendix

attempts to provide a more accurate, but less elegant, analytical model with all the important

bending and axial/bending terms included. This appendix begins where the NASTRAN

component model section of chapter 3 leaves off.

The finite element model of the component, shown again in figure 54 below, is now

ready to be assembled with linear springs (one for the piezoelectric and one for the preload

springs) and six-degree-of-freedom slender beam elements (one for the semirigid beam and

two for the flexures).

J, 0.25P

(2b, t, L, 2A, 21)f

/t//.// t/'//J ./,," ///////'l///I 1//,,' i //t//_.k_. 7,,,'/1 //

Figure 54. The one-eighth model with combined lever arm properties.
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Theflu'sttaskis to assemblethreebeamelementstogetherasdepictedin figure55.
Vl V2 V3 V4

Figure 55. 12 degree-of-freedom lever arm in local coordinate system.

The slender beam element equations for the flexure on the left of figure 55 are written in

matrix form:

F;

F_

MI

F;

F_

.M2

2 EA/ 0 0 -2 EA/ 0 0

L: L:
0 24EI/ -12El/ 0 -24EI/ -12El:

3 2 3 2
L: L/ L/ L/

-12El: 8El: 12El/ 4El/
0

2 2
L/ L: L: L:

0 0 2El/ 0 0

L/

-24EI/ 12El/ 24EI: 12El/
0

L_ 2 3 2L/ L: L/

-12El/ 4El/ 0 12El/ 8El/

12,2/ L/ if/ L/

0

-2 Ell

L:
0

0

-Ul "

121

Oi

U2

(85)

This stiffness matrix is identical to the stiffness matrix of the flexure on the right.

Substituting the semirigid beam properties into the matrix above yields the center beam

element's stiffness matrix.

In order to see how the larger global stiffness matrices are assembled and manipulated

throughout the rest of this section, dummy alphabet variables will be used to represent the

stiffness matrix elements. The stiffness matrices are now represented as

7aa ad

bb bc be bf

cb cc ce cf

da dd

eb ec ee ef

Fo fc fe ff

K 1 = K 3 = (86)
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K 2 =

AA AD

BB BC BE BF

CB CC CE CF

DA DD

EB EC EE EF

FB FC FE FF

(87)

When these matrices and the corresponding semirigid beam stiffness matrix are assembled

into the global stiffness matrix in local coordinates, a 12 by 12 matrix is constructed

F?

Ml

Mz

F;

M3

FI

<.M4.

-aa ad

bb bc be bf

cb cc ce cf

dd + AD
da AA

ee + eif_ BE BFeb ec BB

aa + ad
DA DD

bb + bc +
EB EC EE EF be bf

cb + cc +
FB FC FE FF ce cf

da dd

eb ec

fb fc

u,z.

v 2

02

u3

v 3

031

"4]

ee ef v4J
fe ft.04

(88)

Four boundary conditions can be applied to reduce the number of equations and

unknowns from twelve to eight. Two of them, 01 = 0 and 04 - 0, can be directly applied

to equation (88) to reduce the number of equations and unknowns to ten.
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!F,"

F':

M2

M3

aa

da

ad

bb

dd+
AA

eb

.to

DA

be bf

ee+BB

EB EC

FB FC

AD

BE BF

CE CF

aa +
DD ad

bb + bc +
EE EF
cb + cc +
FE FF

da dd

eb ec

Ul

v 1

u.2

V 2

o2i

U3

be v3

ce 03

U4

ee .v4

(89)

{F}xy = [K]xy{U}xy

The remaining two boundary conditions must be applied after the local degrees of freedom

of node one and four are transformed to the global coordinate system as in figure 56.
Vl

V3

Figure 56.

V03_ U4

Degree's of freedom at nodes one and four are transformed into the global

coordinate system.

Transformation matrices are used to transform the degrees of freedom of nodes one and

four to the global coordinate system. Both the force vector and the displacement vector

need to be transformed with the transformation matrix
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[Ao]
1

[A1]= ""
1

[A0]

cos0 sin0]where [A°] = -sin 0 cos0 "

The force vector in Equation (89) is transformed as follows:

{r}xy = [K]xy{.}_

{F}xy = [Al]{F}xy

{F}xy = [A1 ][K]xy{U}xy

The displacement vector in Equation (89) is transformed as follows:

{"}XY = [At]{"}xy

{u}xy = [A 1]-1 {u}x Y = [A 1]T {U}xy

Equation (91) and (92) are combined to find the new global stiffness

{F}x Y = [A l ][K]xy[A 1]T {U}x Y

{K}x Y = [A1][K]xy[A l lT

The resulting global

constants indicate non-zero elements.

(90)

(91)

(92)

(93)

stiffness matrix has the following matrix structure, where the
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"F("

Mz

F;

M3

F'4

"al a2 a3 a4 a5

bl b2 b3 b4 b5

cl c2 c3 c6

dl d2 d4 d5 d7 d8

el e2 e4 e5 e7 e8

f3 f6 f9 fl0

g4 g5 g7 g8 g9 gl0

h4 h5 h7 h8 h9 hl0

i6 i7 i8 i9 i10

j6 j7 j8 j9 jl0

"U l

V1

u2

v 2

02

U3

V3

O3
Ua

V4

(94)

Applying the remaining two boundary conditions, U 1 = 0 and V4 = 0 yields an eight by

eight matrix

7Y
2

I M2

,X
14

"b2 b3 b4 b5

c2 c3 c6

d2 d4 d5 d7 d8

e2 e4 e5 e7 e8

f3 f6 f9

g4 g5 g7 g8 g9

h4 h5 h7 h8 h9

i6 i7 i8 i9

" V1 "

u2

v2 I

02

U3

V3

O3
U4

(95)

Equation (95) describes the eighth model below

/

1,-P /

_gt v2

"_xx"__' t,L, 2A,21)srb

_(2b, t,L, 2A, 2I)f

02

U3 U4, Fspring

Figure 57. The one-eighth model with combined lever arm properties and eight remaining

beam element degrees of freedom.
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Since U 4and V 1 are the only degrees of freedom needed to calculate the effective

stiffness of the component and the percent strain energy in the piezoelectric, the other

degrees of freedom can be statically condensed out of the global stiffness matrix. The first

step is to rearrange the matrix equations into a form suitable for static condensation. The

following matrix has maintained its symmetry since each row exchange is followed by a

column exchange.

b2

c2

d2

e2

"P/4

0

0

0

0

0

0

0

i9

f9

g9

h9

b3 b4 b5

i6 i7 i8

c3 c6

f3 f6

d4 d7 d5 d8

g4 g7 g5 g8

e4 e7 e5 e8

h4 h7 h5 h8

V1

u4 I

U2

U3

V2

V3

0:

o3

(96)

Static condensation will involve inversion of the six by six submatrix, which is actually

a 2 by 2 inversion and a 4 by 4 inversion combined. Since 03 = 02 as noticed in the

deflected shape and NASTRAN output, it is advantageous to add the elements of the eighth

column to the elements of the seventh column to reduce the matrix to a 7 by 7 and reduce

the maximum submatrix inversion to a 3 by 3 (Computationally, this inverse is an order of

magnitude less difficult.) Note that the new redundant eighth equation must be added to the

seventh equation in order to maintain symmetry within the matrix.

b2

c2

b3

9 i6

c3 c6

f9 f3 f6

d2

g9

e2 h9

b4 b5

i7 i8

d4 d7 (d5 + d8)

g4 g7 (g5 + g8)
[e5 + e8 +_

(e4+h4) (e7+h7) lh 5+h8 ]

P/4

0

0

0

0

0

0

These equations have the block matrix form described in (98).

r ]r=LK.IK  JL J

"V1 "

U2

U3

v 2

V3

.02.

(97)

(98)

where R, = P/4, and
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K a a "_

:+2e_aI (sO)2
I Lf

24Elf 2

+--_i (co)

+ K spring

0

0

e+ 2EAf (cO) 2

Lf

24Elf 2

+--_i (sO)

+0. 5( K piezo )

[2EAf (sO)

Kac = ] Lf

[ -2EAr (cO)

Lf

-24Elf

L_ (sO)

-12Elf ]

-_lcol[

°]Kcc = 0 2 K3x3

K2x 2 =

2EA/-I 2EAsrb

Lf Lsr b

SYM.

-2EAst b

L_rb

2EAr + 2EAsrb

Lf Lsrb

(99)

g3x3 -

I (+ 24Elsr b -24Elsr b 12Elf -24Els, b

Lsrb LZf 2Lsrb

SYM.

24EIf 24Elsr b) (-12Elf 24Elsr b

16EIf. + 24Els, +

Lf Ls,.b

- p •

-r

Retaining the U a displacement vector and condensing the Ucdisplacement vector yields

U c = -gc:gcaU a
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(Kaa- KacKOKca)Ua = Ra (100)

Inversion of Kcc, consists of two decoupled inversions:

y-;l

K3x3 -1 =

ps - r 2

p2s 2pr2 q2s 2qr2)(p2s -qs-r2 )_ _ _2pr 2- q2 s- 2qr 2

ps - r 2

(p2s-2pr2 q2s-2qr2)

SYM.

-r

ps - 2r 2 - qs

r)ps - 2r 2 - qs

E-q_. )_s - 2r 2 - qs

It is now evident that if K3x3is not simplified or constrained, the inversion and subsequent

matrix multiplications will yield hundreds of stiffness terms of little analytical value. This

was verified with the MAPLE matrix manipulation software. Equations (99) and (100) are

modified with the following three changes in an attempt to bring out the important terms

while eliminating negligible ones.

1. Multiply the seven matrix equations by the semi-rigid beam bending flexibility:

-1

(24<,b)
iLsr b

2. Substitute beam properties:

l 1 ,Af=bftf, If= bft}, Asrb =bsrbtsrb,Isrb=-_bsrbtsrb•

3. Define flexuretosemi-rigidbeam bending stiffnessratio,/3.

24Elsrb = _ - _ _asrb)
,-5---

where _x's represents the "aspect ratios" of the beams.

(101)
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These modifications yield the following new matrices:

R a = 8E_3rb

+ Otf(cO) 2 +
4Eb

gac _

Ot 3

O_srb k.asrb J

o o
O_srb _, asrb )

2 _O_srb]

2 (asrb)

K2x 2 =
a/ ) asrb

SYM. a/ (
_.'77:3"-1+ asr------_b
Olsr b O_f

K3x3 "-

SYM.

2 _,asrb) -Lsrb I

(l+(°tf 13) l-Lj(af ]3k,a,,b) )( 2 _,a,,b; +L_b

T _,Ofsrb .J -- L;rb

(102)

The initial motivation behind dividing by the semi-rigid beam stiffness in step one, is to

divide out the presumed insignificant flexure stiffnesses from the 7 by 7 matrix by an

"infinite" stiffness. This presumption is what was assumed as truth in the analytical model

in section 3.2. However, the flexure to semirigid beam bending ratio of the first design,

13=4.1 (equation 101), indicates that the "rigid-beam" in the analytical model is actually

more flexible than the "flexure" in pure bending. It cannot, however, be concluded that the

truss model is inadequate for use as an initial estimate, since its accuracy is derived from

modeling the kinematics of the device based on its deflected shape, regardless of the

coupled bending stiffness interaction. It can be concluded that another assumption about
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thebendingstiffnessratio, 13, is mandatory for simplifying the analytical model. It should

also be noted that the pure bending ratio, t, is a practical non-dimensionalization

parameter for matrix simplification. It is not necessarily an accurate ratio for comparing the

total bending stiffness contributions of the flexure and semirigid beam to the effective

stiffness of the component. Since the internal bending moment is zero in the center of the

semirigid beam (point of counterflexure), and maximum at the ends of the flexures, the

flexibility of the semirigid beam is relatively unexercized. A more useful bending ratio

would also compare the flexibility of one flexure to one-half the semirigid beam, since

there are two flexures for every semirigid beam.

The important simplification comes from recognizing three facts about the beam aspect

ratio for the flexure and and semi-rigid beam.

Fact 1. The first design had beam aspect ratios of 16% and 10% for the flexure and

semi-rigid beam, respectively. The thickness and, in turn, aspect ratio of the semi-rigid

beam was semi-arbitrarily selected to please aesthetic requirements. Increasing the semi-

rigid beam's thickness until both beam's aspect ratio were equal at 16% would have

channeled more strain energy into the piezoelectric, while the effective stiffness of the

component would remain relatively insensitive to such a modification. In conclusion, it

is recommended that the aspect ratio of the semirigid beam should be greater than or equal

to that of the flexure.

Fact 2. The geometrical constraints of the device limit the upper bound of the semi-

rigid beam aspect ratio.

Fact 3. It can be argued that the technical efficacy of the device is improved as the

aspect ratios converge toward the same value.

Fact 4. Since, the Bemoulli-Euler beam theory, used here, neglects the shear

deflections important to "stubby" beams, it is important to limit the upper bound of the

semi-rigid beam aspect ratio to the 10-20% range shared by the flexure.

All these facts suggest that arbitrarily equating aspect ratios is a harmless constraint that

does not limit design alternatives, but rather, replaces arbitrary variable selection with a

sound design rule:

o_= af = as, b (103)

Figure 58 illustrates that the imposed aspect ratio constraint does not limit design

options.
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a =o.l_ _ _" j

a=o.l_ c_ I--

a =o.16 _

a = 0.2

Figure 58. Five examples of lever arms with a/= asr b illustrate that the aspect ratio

constraint does not limit design options.

The aspect ratio constraint simplifies the matrices as follows:

R a = 8Eba 3
0

V(x,p,i.g

Xaa=[['2e-G-gr_+ (sO):o

+

. K piezo

4Eba 3
o

t" a_l (cO) 2+L(SO)2a

x.c=[ la-l_(sO) 0 (-cO) O -_-(-cO)0 la-r(-cO) o (sO)_-(sO)

K2x 2 = 2i]
SYM. a2 j

K3z 3 -=

2 -1

SYM. -y- + t;_ )

(104)
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The simplicity of matrix (104) is appreciated when considering that the initial matrix

inversion involved a densely populated six by six matrix. The assembled stiffness matrix

is now a function of the lever angle, the aspect ratio, the semi-rigid beam and flexure

lengths and the piezoelectric properties. The aspect ratio is the ideal parameter for

designing the flexure and constraining the semi-rigid beams thickness. A similar

relationship between the two beam lengths is needed to eliminate impractical designs.

Obviously, cases where L I > L,_ are of no interest to the designer. The following

substitution will be made:

Ls, b = M_,, (105)

where n > 8.

The scaling parameter, n, defines the size of the component and will later indicate when

the beam can be assumed a rigid beam.

g,,_= 2 (n-21/2)L' ] (106)

S_M. (" +_A) J

Substitute m= (nZ + 2/_3), n=(n-Y2 ) (107)

into (106) to yield: g.jx3 -'

2 -1 --tiL t ]

2 ffLt [

SYM. _L_ J

(108)

Inverting (108) yields:

1
g-t _.

"-2 L + 'LI + 'LI
-2_L_ + n L) _Lt

SYM. -3

(109)

Assuming that _ =_= n ", simplifies the matrix inversion with single term matrix

elements. Without this substitution, the static condensation matrix multiplications in the

next solution step produce too many terms to be used in a simple analytical tool.

X;. I=3"

-1
-1 0

nL r
1

nL t
-3

SYM. (nL/ )2

(110)
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The errors associated with substituting _2 = _ = n 2 into (106) are graphed in figure 59.

The errors indicate that a maximum 5% error is introduced into the matrices, if n > 20. For

n < 20, the model is less useful, due to the large matrix substitution errors. Thus, this

constraint does limit design options, unlike the unnoticable aspect ratio constraint. It

should be noted that the current design cannot be modeled with this analysis, since n = 8 to

satisfy a stress factor of safety of 4.0. The model is practical if a small flexure to

semirigid-beam size ratio is desired for the sake of performance at the expense of the

flexure's yield stress safety factor.
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Figure 59. Simplified Scaling Parameter Errors

Now that the five by five matrix has been inverted successfully with single term

elements in the resulting matrix, static condensation of the undesired degrees of freedom is

accomplished with the following man-ix multiplication,

x. =(x=-

where, K ,U,, = Ro

Multiplying (111) by 2Eba3yields the 2x2 effective stiffness matrix equation:

(III)
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2Eb(sin3 0)2 lot

+2Eb(cosO)2(ot 2 + (Q)ot 3)

SYM.

3 30t_2Eb(cosO)(sin O) 20n2

+ -- Of
2

+2Eb(sin O)2(ot 2 +(R)a 3)

I

vii

i

]

0.25P

0

(112)

1 1 3 2
=-+-- and R=Q---, (113)where, Q 5 5n +_ 5n

The Q and R coefficients are analogous to a finite element's "pure bending" stiffness

coefficients because they are multiplied by the cubic aspect ratio, a J. Likewise, the terms

depending on the o_2 are "shear-bending" coefficients, and the terms depending on _x are

the axml coefficients.

0.3
Pure Bending Coefficients

0.25

0.2

0.15

0.1

...............i................................................................

5 15 25 35 45

Semi rigid beam length scaling parameter (n)

Figure 60. The discrepancy between Q and R is indicative of the 5% simplification errors
imposed during static condensation.

Since static condensation pre-and-post-multiplied a symmetric matrix by another matrix,

pure bending from node 4 should be resisted by the same stiffness as pure bending from

node 1, (with exception to the sine-squared and cosine-squared term differences at the

opposite ends of the lever arm which are responsible for transforming "pure-bending"

moments and rotations into the model's forces and displacements, vl and u4). Since this is

not the case, since Q does not equal R for all n. The discrepancy between Q and R, in
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figure 60, is indicativeof the 5% simplification errors imposed during static condensation.

Thus, for n>20, Q=R=0.2.

-3 1

Since, 20n2 <<--j- for n > 20, the matrix (112) becomes,

2Eb(sin3 0)2 )ct

+2Eb(cosO)2(a 2 +0.20t J)

SYM.

2Eb(cos 0)(sin 0)"

-- +K_*°2 ( 2 Eb(3°s O)2 _,l°t

+2Eb(sin O)2(a 2 +0.2or 3)

V.

I

.I

O. 25P

0

(114)

Due to the fact that this does not look like an ordinary stiffness matrix, it is insightful to

resubstitute the original beam properties into this matrix.

t bt _
tx=--, A=bt, I=-- (115)

L 12

2(cosO)2(12El)
+

, t-T)

4 (c°s0)2 (24EI]
5re)

SYM.

._ (coso,2( /2 3

-( 2(sin O)1 (12EI]
, t,L_)

(sin O) i (24EI)
5 t-U-)

V 1

u,

0.25P

0

ab V_

where, [ab-_c][U_]=[O'25P ] (116)

The first term in the "a" matrix element can now be easily deciphered as the double

beam's axial stiffness, of three-series-element lever arm, transformed through theta to vl.

The second and third terms in "a" together model the bending stiffness of the lever arm in

shear.

The effective stiffness of the component can be found by
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p b 2
Keff = m = a -

4v I c
(117)

The percentage of the total strain energy that is in the piezoelectric is found by

Up,,,o Km,,o(U,_12 - b 2
%Upi,,,, = u--U-_,_= K----_#_. v, J c (a c - b 2)

(118)

The aspect ratio that corresponds to the maximum strain energy in the piezoelectric can be

found by finding the roots to the fifth-order equation:

o3a(U_,,,)=O. (119)
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APPENDIX II

LOW-FREQUENCY ASTREX MODE SHAPES

As depicted in the transfer functions of chapter 5, the high-amplitude dynamics below

35 Hertz are an order of magnitude larger, and thus more influencial to the performance of

the testbed. Although the passive damping implementation was targeted for a higher

frequency bandwidth to facilitate line of sight control roll-off, a careful look at the first 18

mode shapes, indicates that the low-frequency testbed dynamics are simply the larger

modal displacements of the apex. Although there is significant modal deformation in the

backplane, the largest modal displacements of the structure are primarily due to tripod

bending. The following mode shapes are also helpful in appreciating the need for a tuned-

mass damper in the apex.
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